Cho x > 0 . Tìm min của y = x + \(\dfrac{1}{x^2}\).
Cho x,y,z > 0. Tìm GTNN của
P = (x-1)2 + (y-2)2 + (z-1)2 + \(\dfrac{12}{\left(x+y\right)\sqrt{x+y}+1}+\dfrac{12}{\left(y+z\right)\sqrt{y+z}+1}\)
Tìm min của y = \(\dfrac{x^2}{x+1}\) với x >0
Cho `x,y,z>0,x+y+z=1`
tìm `min:1/(16x)+1/(4y)+1/z`
bài 1: tìm x, y biết
a, (x-3)^2 +(y + 2)^2 = 0
b,(x-12+y)^200+(x-4-y)^200= 0
Bài 2:cho
A= 3+3^2+3^3+.........+3^2008
Tìm x biết 2A+3=3^x
Bài 1:Cho x, y, z >0 thỏa mãn x+y+z=12.Tìm GTLN của biểu thức
\(M=\dfrac{2x+y+z-15}{x}+\dfrac{x+2y+z-15}{y}+\dfrac{x+y+2z-15}{z}\)
Bài 2:Cho a,b,c là số thực dương. Tìm GTNN của biểu thức
\(P=\dfrac{\left(a+b+c\right)^2}{30\left(a^2+b^2+c^2\right)}+\dfrac{a^3+b^3+c^3}{4abc}-\dfrac{131\left(a^2+b^2+c^2\right)}{60\left(ab+bc+ca\right)}\)
Cho x,y,z là 3 số dương thỏa mãn \(\sqrt{x^2+y^2}+\sqrt{y^2+z^2}+\sqrt{z^2+x^2}=6\)
Tìm Min của P = \(\dfrac{x^2}{y+z}+\dfrac{y^2}{x+z}+\dfrac{z^2}{x+y}\)
Nhớ làm cách dễ hiểu nha!!!
Cho 3 số thực x;y;z thõa mãn x+y+z=0 , x2+y2+z2=8. Tìm Min S= |x| + |y| + |z|