Giải bài này hơi dài, t ngại làm lắm :v you vào ib t chỉ cho =))
Giải:
(*) Có: \(\sqrt{a^3+1}=\sqrt{\left(a+1\right)\left(a^2-a+1\right)}\le\dfrac{a^2+2}{2}\)
\(\Rightarrow\dfrac{12}{\left(x+y\right)\sqrt{x+y+1}}\ge\dfrac{12}{\dfrac{x+y+2}{2}}=\dfrac{24}{x+y+2}\)
Tương tự:
\(\dfrac{12}{\left(y+z\right)\sqrt{y+z+1}}\ge\dfrac{24}{y+z+2}\)
\(\Rightarrow P\ge\left(x-1\right)^2+\left(y-2\right)^2+\left(z-1\right)^2+24\left(\dfrac{1}{x+y+2}+\dfrac{1}{y+z+2}\right)\)
\(\Rightarrow P\ge\left(x-1\right)^2+\left(y-2\right)^2+\left(z-1\right)^2+\dfrac{24\cdot4}{x+2y+z+4}\)
\(\Rightarrow\) Ta đánh giá \(\left(x-1\right)^2+\left(y-2\right)^2+\left(z-1\right)^2\) theo x + 2y + z
--> Min
Áp dụng Cauchy-Schwarz:
\(\left(1^2+2^2+1^2\right)\left[\left(x-1\right)^2+\left(y-2\right)^2+\left(z-1\right)^2\right]\ge\left[x-1+2\left(y-2\right)+z-1\right]^2\)
\(\Rightarrow\left(x-1\right)^2+\left(y-2\right)^2+\left(z-1\right)^2\ge\dfrac{1}{6}\left(x+2y+z-6\right)^2\)
\(\Rightarrow P\ge\dfrac{1}{6}\left(x+2y+z-6\right)^2+\dfrac{96}{x+2y+z+4}\ge\dfrac{26}{3}\)
Xảy ra khi x = y = z = 2
P/s: T làm ra vậy đó, Ai thấy sai thì góp ý nha, nhưng mà t thấy t lm đúng á :v @Ace Legona, @Unruly Kid mời 2 bác coi thử :)
Gió: Đây là lời giải cụ thể hôm bữa t ns vs you đó
(Hôm trc nhẩm nhẩm thấy dài dài, hôm này làm ra thấy có 1 mẩu giấy :v)