§1. Bất đẳng thức

Nguyen Ha

Cho các số thực dương x,y,z thỏa mãn xyz ≤ 1

CMR:\(\dfrac{x\left(1-y^3\right)}{y^3}+\dfrac{y\left(1-z^3\right)}{z^3}+\dfrac{z\left(1-x^3\right)}{x^3}\)≥ 0

Kuro Kazuya
14 tháng 6 2017 lúc 17:37

\(BĐT\Leftrightarrow\dfrac{x}{y^3}+\dfrac{y}{z^3}+\dfrac{z}{x^3}\ge x+y+z\)

Đặt \(\left\{{}\begin{matrix}a=\dfrac{1}{x}\\b=\dfrac{1}{y}\\c=\dfrac{1}{z}\end{matrix}\right.\) \(\Rightarrow abc\ge1\)

\(BĐT\Leftrightarrow\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}\ge\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)

\(VT=\dfrac{a^4}{ab}+\dfrac{b^4}{bc}+\dfrac{c^4}{ac}\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{ab+bc+ac}=\dfrac{\left(ab+bc+ac\right)^2}{ab+bc+ac}=ab+bc+ac\)

Ta có \(abc\ge1\)

\(\Rightarrow\left\{{}\begin{matrix}bc\ge\dfrac{1}{a}\\ab\ge\dfrac{1}{c}\\ac\ge\dfrac{1}{b}\end{matrix}\right.\Rightarrow bc+ac+ab\ge\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)

\(\Rightarrow\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}\ge\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\left(đpcm\right)\)

\(\Leftrightarrow\dfrac{x\left(1-y^3\right)}{y^3}+\dfrac{y\left(1-z^3\right)}{z^3}+\dfrac{z\left(1-x^3\right)}{x^3}\ge0\)

Bình luận (0)

Các câu hỏi tương tự
Lưu Thị Thảo Ly
Xem chi tiết
Ryan Park
Xem chi tiết
Phạm Thúy Vy
Xem chi tiết
Phan Cả Phát
Xem chi tiết
 ๖ۣۜDevil
Xem chi tiết
SA Na
Xem chi tiết
Nguyen Kim Chi
Xem chi tiết
Không tên
Xem chi tiết
Đức Huy ABC
Xem chi tiết