§1. Bất đẳng thức

Không tên

Cho 3 số thực x,y,z phân biệt. Chứng minh rằng: \(\dfrac{x^2}{\left(y-z\right)^2}+\dfrac{y^2}{\left(z-x\right)^2}+\dfrac{z^2}{\left(x-y\right)^2}>=2\)

Neet
26 tháng 12 2017 lúc 13:12

Để ý đẳng thức : \(\dfrac{xy}{\left(y-z\right)\left(z-x\right)}+\dfrac{yz}{\left(z-x\right)\left(x-y\right)}+\dfrac{xz}{\left(x-y\right)\left(y-z\right)}=\dfrac{xy\left(x-y\right)+yz\left(y-z\right)+xz\left(z-x\right)}{\left(x-y\right)\left(y-z\right)\left(z-x\right)}=-\dfrac{\left(x-y\right)\left(y-z\right)\left(z-x\right)}{\left(x-y\right)\left(y-z\right)\left(z-x\right)}=-1\)

Ta luôn có: \(\left(\dfrac{x}{y-z}+\dfrac{y}{z-x}+\dfrac{z}{x-y}\right)^2\ge0\) ;\(\forall x;y;z\)

\(\Leftrightarrow\dfrac{x^2}{\left(y-z\right)^2}+\dfrac{y^2}{\left(z-x\right)^2}+\dfrac{z^2}{\left(x-y\right)^2}\ge-2\sum\dfrac{xy}{\left(y-z\right)\left(z-x\right)}=2\)

(ĐPcm)

Dấu = xảy ra khi \(\dfrac{x}{y-z}+\dfrac{y}{z-x}+\dfrac{z}{x-y}=0\)

Bình luận (0)
Lightning Farron
29 tháng 12 2017 lúc 22:34

Thêm 1 ý tưởng đc buff từ cách trước :))

\(BDT\LeftrightarrowΣ\dfrac{x^2}{\left(y-z\right)^2}-2=\left(Σ\dfrac{x}{y-z}\right)^2-2Σ\dfrac{xy}{\left(y-z\right)\left(z-x\right)}-2\)

\(=\dfrac{\left(Σ\left(x^3-x^2y-x^2z+xyz\right)\right)^2}{\prod\left(x-y\right)^2}-2\dfrac{Σ\left(x^2y-x^2z\right)}{\prod\left(x-y\right)}-2\)

\(=\dfrac{\left(Σ\left(x^3-x^2y-x^2z+xyz\right)\right)^2}{\prod\left(x-y\right)^2}\ge0\)

Bình luận (2)

Các câu hỏi tương tự
Phạm Thúy Vy
Xem chi tiết
Phan Cả Phát
Xem chi tiết
Phan Cả Phát
Xem chi tiết
Lưu Thị Thảo Ly
Xem chi tiết
SA Na
Xem chi tiết
Gió
Xem chi tiết
Nguyen Ha
Xem chi tiết
Phạm Kim Oanh
Xem chi tiết
Ryan Park
Xem chi tiết