Tính
\(\dfrac{3}{x^2+6x+9_{ }}+\dfrac{2}{6x-x-9}+\dfrac{x^2+30x-27}{x^4-18x^2+81}\)
Rút gọn : \(\frac{3}{x^2+6x+6}+\frac{3}{6x-x^2-9}+\frac{x^2+30x-27}{x^4-18x^2+81}\)
Sửa đề: \(\dfrac{3}{x^2+6x+9}-\dfrac{3}{x^2-6x+9}+\dfrac{x^2+30x-27}{x^4-18x^2+81}\)
\(=\dfrac{3x^2-18x+27-3x^2-18x-27+x^2+30x-27}{\left(x+3\right)^2\cdot\left(x-3\right)^2}\)
\(=\dfrac{x^2-6x-27}{\left(x+3\right)^2\cdot\left(x-3\right)^2}=\dfrac{\left(x-9\right)\left(x+3\right)}{\left(x+3\right)^2\cdot\left(x-3\right)^2}\)
\(=\dfrac{\left(x-9\right)}{\left(x^2-9\right)\left(x-3\right)}\)
1.rút gọn biểu thuc P=\(\dfrac{2}{x+3}+\dfrac{1}{x-3}+\dfrac{9-x}{9-x^2}\) với x\(\ne-3vàx\ne3\)
2.thực hiện phép tính \(\left(2x^4-3x^3-3x^2+6x-1\right):\left(x^2-2\right)\)
\(\left(15x^4y^6-12^3y^4-18x^2y^3\right):\left(-6x^2y^2\right)\)
Thực hiện các phép tính sau :
a) \(\dfrac{x^3-x^2+x-1}{x^2-4}-\dfrac{x-2}{x^2+3x+2}-\dfrac{3x}{x^2-x-2}-\dfrac{2x+5}{\left(x+1\right)\left(4-x^2\right)}\)
b) \(\dfrac{19^2-30x+9}{2x^3+54}-\dfrac{x^3-3}{2^2+6x}-\dfrac{3x^2}{2x^2-6x+18}\)
a: \(=\dfrac{x^3-x^2+x-1}{\left(x-2\right)\left(x+2\right)}-\dfrac{x-2}{\left(x+2\right)\left(x+1\right)}-\dfrac{3x}{\left(x-2\right)\left(x+1\right)}+\dfrac{2x+5}{\left(x+1\right)\left(x-2\right)\left(x+2\right)}\)
\(=\dfrac{\left(x-1\right)\left(x^2+1\right)\left(x+1\right)-x^2+4x-4-3x^2-6x+2x+5}{\left(x+2\right)\left(x+1\right)\left(x-2\right)}\)
\(=\dfrac{x^4-1-4x^2+1}{\left(x+2\right)\left(x-2\right)\left(x+1\right)}=\dfrac{x^2\left(x-2\right)\left(x+2\right)}{\left(x+2\right)\left(x-2\right)\left(x+1\right)}\)
=x^2/x+1
b: Sửa đề: \(\dfrac{19x^2-30x+9}{2x^3+54}-\dfrac{x-3}{2x^2+6x}-\dfrac{3x^2}{2x^2-6x+18}\) \(=\dfrac{19x^2-30x+9}{2\left(x+3\right)\left(x^2-3x+9\right)}-\dfrac{x-3}{2x\left(x+3\right)}-\dfrac{3x^2}{2\left(x^2-3x+9\right)}\)
\(=\dfrac{19x^3-30x^2+9x-\left(x-3\right)\left(x^2-3x+9\right)-3x^3\left(x+3\right)}{2x\left(x+3\right)\left(x^2-3x+9\right)}\)
\(=\dfrac{19x^3-30x^2+9x-3x^4-9x^3-\left(x^3-3x^2+9x-3x^2+9x-27\right)}{2x\left(x+3\right)\left(x^2-3x+9\right)}\)
\(=\dfrac{-3x^4+10x^3-30x^2+9x-x^3+6x^2-18x+27}{2x\left(x+3\right)\left(x^2-3x+9\right)}\)
\(=\dfrac{-3x^4+10x^3-24x^2-9x+27}{2x\left(x+3\right)\left(x^2-3x+9\right)}\)
Thực hiện phép tính:
\(a,\dfrac{x^2+3x+9}{2x+10}.\dfrac{x+5}{x^3-27}\)
\(b,\left(\dfrac{6x+1}{x^2-6x}+\dfrac{6x-1}{x^2+6x}\right)\left(\dfrac{x^2-36}{x^2+1}\right)\)
\(\frac{x^2+3x+9}{2x+10}.\frac{x+5}{x^3-27}\)
\(=\frac{x^2+3x+9}{2\left(x+5\right)}.\frac{x+5}{\left(x-3\right)\left(x^2+3x+9\right)}\)
\(=\frac{\left(x+5\right)\left(x^2+3x+9\right)}{2\left(x+5\right)\left(x-3\right)\left(x^2+3x+9\right)}\)
\(=\frac{1}{2\left(x-3\right)}\)
\(\left(\frac{6x+1}{x^2-6x}+\frac{6x-1}{x^2+6x}\right)\left(\frac{x^2-36}{x^2+1}\right)\)
\(=\left[\frac{6x+1}{x\left(x-6\right)}+\frac{6x-1}{x\left(x+6\right)}\right]\left[\frac{\left(x-6\right)\left(x+6\right)}{x^2+1}\right]\)
\(=\frac{\left(6x+1\right)\left(x+6\right)+\left(6x-1\right)\left(x-6\right)}{x\left(x-6\right)\left(x+6\right)}.\frac{\left(x-6\right)\left(x+6\right)}{x^2+1}\)
\(=\frac{6x^2+36x+x+6+6x^2-36x-x+6}{x\left(x-6\right)\left(x+6\right)}.\frac{\left(x-6\right)\left(x+6\right)}{x^2+1}\)
\(=\frac{12x^2+12}{x\left(x-6\right)\left(x+6\right)}.\frac{\left(x-6\right)\left(x+6\right)}{x^2+1}\)
\(=\frac{12\left(x^2+1\right).\left(x-6\right)\left(x+6\right)}{x\left(x-6\right)\left(x+6\right)\left(x^2+1\right)}\)
\(=\frac{12}{x}\)
GHPT sau: \(\left\{{}\begin{matrix}\dfrac{25}{9}+\sqrt{9x^2-4}=\dfrac{1}{9}\left(\dfrac{2}{x}+\dfrac{18x}{y^2-2y+2}+25y\right)\\7x^3+y^3+3xy\left(x-y\right)-12x^2+6x=1\end{matrix}\right.\)
Thực hiện phép tính:
\(a,\dfrac{x^2+3x+9}{2x+10}.\dfrac{x+5}{x^3-27}\)
\(b,\left(\dfrac{6x+1}{x^2-6x}+\dfrac{6x-1}{x^2+6x}\right)\left(\dfrac{x^2-36}{x^2+1}\right)\)
a: \(=\dfrac{x^2+3x+9}{2\left(x+5\right)}\cdot\dfrac{\left(x+5\right)}{\left(x-3\right)\left(x^2+3x+9\right)}=\dfrac{1}{2\left(x-3\right)}\)
b: \(=\dfrac{\left(6x+1\right)\left(x+6\right)+\left(6x-1\right)\left(x-6\right)}{x\left(x-6\right)\left(x+6\right)}\cdot\dfrac{\left(x-6\right)\left(x+6\right)}{x^2+1}\)
\(=\dfrac{6x^2+37x+6+6x^2-37x+6}{x}\cdot\dfrac{1}{x^2+1}=\dfrac{12}{x}\)
a,\(\dfrac{x+1}{x-3}+\dfrac{-2x^2+2x}{x^2-9}+\dfrac{x-1}{x+3}\)
b,\(\dfrac{1-2x}{6x^3y}+\dfrac{3+2y}{6x^3y}+\dfrac{2x-4}{6x^3y}\)
c,\(\dfrac{5}{2x^2y}+\dfrac{3}{5xy^2}+\dfrac{x}{3y^3}\)
d,\(\dfrac{5}{4\left(x+2\right)}+\dfrac{8-x}{4x^2+8x}\)
c,\(\dfrac{x^2+2}{x^3+1}+\dfrac{2}{x^2+x+1}+\dfrac{1}{1-x}\)
\(a,=\dfrac{x^2+4x+3-2x^2+2x+x^2-4x+3}{\left(x-3\right)\left(x+3\right)}=\dfrac{2\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}=\dfrac{2}{x-3}\\ b,=\dfrac{1-2x+3+2y+2x-4}{6x^3y}=\dfrac{2y}{6x^3y}=\dfrac{1}{x^2}\\ c,=\dfrac{75y^2+18xy+10x^2}{30x^2y^3}\\ d,=\dfrac{5x+8-x}{4x\left(x+2\right)}=\dfrac{4\left(x+2\right)}{4x\left(x+2\right)}=\dfrac{1}{x}\\ c,=\dfrac{x^2+2+2x-2-x^2-x-1}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{x-1}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{1}{x^2+x+1}\)
Cho \(x=\dfrac{3+\sqrt{5}}{2}\). Tình \(P=\left(10x^2-30x+11\right)^2+\dfrac{\left(2x^2-6x+3\right)^{10}}{x^5-3x^4+x^3-1}\)
\(x=\dfrac{3+\sqrt{5}}{2}\Rightarrow2x-3=\sqrt{5}\Rightarrow4x^2-12x+9=5\)
\(\Rightarrow4x^2-12x+4=0\Rightarrow x^2-3x+1=0\)
\(\Rightarrow P=\left[10\left(x^2-3x+1\right)+1\right]^2+\dfrac{\left[2\left(x^2-3x+1\right)+1\right]^{10}}{x^3\left(x^2-3x+1\right)-1}=1^2+\dfrac{1^2}{0-1}=...\)
a, \(\dfrac{3}{2x+6}-\dfrac{x-6}{2x^2+6x}\)
b, \(\dfrac{x+2}{x-3}-\dfrac{x^2+6}{x^2-3x}\)
c, \(\dfrac{1}{9x-18}+\dfrac{16-7x}{72-18x}+\dfrac{5}{12x-24}\)
a.\(\dfrac{3}{2\left(x+3\right)}-\dfrac{x-6}{2x\left(x+3\right)}=\dfrac{3x-x+6}{2x\left(x+3\right)}=\dfrac{2x+6}{2x\left(x+3\right)}=\dfrac{1}{x}\)