Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
btkho
Xem chi tiết
Nguyễn Việt Lâm
23 tháng 2 2021 lúc 23:38

\(x^4+4x^3+4x^2-4mx^2-8mx+3m+1=0\)

\(\Leftrightarrow\left(x^2+2x\right)^2-4m\left(x^2+2x\right)+3m+1=0\)

Đặt \(x^2+2x=t\ge-1\)

\(\Rightarrow f\left(t\right)=t^2-4m.t+3m+1=0\) (1)

\(\Delta'=4m^2-3m-1\ge0\Rightarrow\)\(\left[{}\begin{matrix}m\ge1\\m\le-\dfrac{1}{4}\end{matrix}\right.\)

Khi đó (1) có 2 nghiệm thỏa mãn \(t_1\le t_2< -1\) khi

 \(\left\{{}\begin{matrix}f\left(-1\right)>0\\\dfrac{t_1+t_2}{2}< -1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}7m+2>0\\2m< -1\end{matrix}\right.\) (ko tồn tại m thỏa mãn)

\(\Rightarrow\) (1) luôn có ít nhất 1 nghiệm không nhỏ hơn -1

\(\Rightarrow\) Pt đã cho có nghiệm khi \(\left[{}\begin{matrix}m\ge1\\m\le-\dfrac{1}{4}\end{matrix}\right.\)

Tiếng anh123456
Xem chi tiết
Kiều Vũ Linh
10 tháng 8 2023 lúc 6:47

∆' = (-2)² - [-(m² + 3m)]

= 4 + m² + 3m

= m² + 3m + 9/4 + 7/4

= (m + 3/2)² + 7/4 > 0 với mọi m ∈ R

Vậy phương trình luôn có hai nghiệm phân biệt với mọi m ∈ R

Nguyễn Lê Phước Thịnh
9 tháng 8 2023 lúc 22:55

Δ=(-4)^2-4(-m^2-3m)

=16+4m^2+12m

=4m^2+12m+16

Để phương trình có 2 nghiệm phân biệt thì

4m^2+12m+16>0

=>m^2+3m+4>0

=>m^2+3m+9/4+7/4>0

=>(m+3/2)^2+7/4>0(luôn đúng)

Lê Ngọc Minh Anh
Xem chi tiết
đấng ys
Xem chi tiết
missing you =
17 tháng 12 2021 lúc 21:55

\(x^4+2x^3+5x^2+4x-1-m=0\)

\(\Leftrightarrow\left(x^2+x\right)^2+4\left(x^2+x\right)-1-m=0\left(1\right)\)

\(đặt:x^2+x=t\ge\dfrac{-\Delta}{4a}=-\dfrac{1}{4}\)

\(\left(1\right)\Leftrightarrow t^2+4t-1-m=0\) có nghiệm trên \([-\dfrac{1}{4};\text{+∞})\)

\(f\left(t\right)=t^2+4t-1=m\)

\(f\left(-\dfrac{b}{2a}\right)=-5\)

\(f\left(-\dfrac{1}{4}\right)=-\dfrac{31}{16}\Rightarrow m\ge-\dfrac{31}{16}\Rightarrow\left[{}\begin{matrix}t=\dfrac{-b}{2a}=-2\Rightarrow x^2+x+2=0\left(vô-nghiệm\right)\left(loại\right)\\\left\{{}\begin{matrix}t1=\dfrac{-4+\sqrt{20+4m}}{2}=-2+\sqrt{5+m}\\t2=\dfrac{-4-\sqrt{20+4m}}{2}=-2-\sqrt{5+m}\end{matrix}\right.\end{matrix}\right.\) 

\(x^2+x=t1=-2+\sqrt{5+m}\Leftrightarrow f\left(x\right)=x^2+x+2=\sqrt{5+m}\) có nghiệm thuộc \(\left[-1;1\right]\)

\(\Rightarrow f\left(-\dfrac{b}{2a}\right)=\dfrac{7}{4}\)

\(f\left(-1\right)=2;f\left(1\right)=4\)

\(\Rightarrow\dfrac{7}{4}\le\sqrt{5+m}\le4\Leftrightarrow\dfrac{-31}{16}\le m\le11\)

\(x^2+x=t2=-2-\sqrt{5+m}\Leftrightarrow f\left(x\right)=x^2+x+2=-\sqrt{5+m}\)

có nghiệm trên \(\left[-1;1\right]\)

\(x^2+x+2>0\Rightarrow x^2+x+2=-\sqrt{5+m}< 0\left(vô-lí\right)\Rightarrow vô-nghiệm\forall m\)

\(\Rightarrow\dfrac{-31}{16}\le m\le11\) thì pt có  nghiệm thuộc \(\left[-1;1\right]\)

 

 

Quỳnh mon
Xem chi tiết
Cô Hoàng Huyền
10 tháng 6 2016 lúc 9:38

Bài 1. Phương trình \(x^2-\left(m+5\right)x+3m+6=0\)

a. \(\Delta=\left(m+5\right)^2-4\left(3m+6\right)=m^2-2m+1=\left(m+1\right)^2\ge0\)

Vậy phương trình luôn có nghiệm.

b. Gọi các nghiệm của phương trình là \(x_1;x_2\). Để các nghiệm của phương trình là độ dài của các cạnh góc vuông của tam giác vuông có độ dài cạnh huyền là 5 thì \(x_1^2+x_2^2=25\)

Theo Viet ta có \(\hept{\begin{cases}x_1+x_2=m+5\\x_1.x_2=3m+6\end{cases}}\)

 \(x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=\left(m+5\right)^2-2\left(3m+6\right)=m^2+4m+13=25\)

\(\Rightarrow m^2+4m-12=0\Rightarrow\orbr{\begin{cases}m=2\\m=-6\end{cases}}\)

Bài 2.

a. Để hai đồ thị có 1 điểm chung thì phương trình hoành độ giao điểm có 1 nghiệm duy nhất. 

Xét phương trình hoành độ giao điểm: \(-x^2=4x-m\Leftrightarrow x^2+4x-m=0\)

Để phương trình có 1 nghiệm duy nhất thì \(\Delta'=0\Leftrightarrow2^2+m=0\Leftrightarrow m=-4\)

Bài 3. Phương trình \(x^2-5x+3m+1=0\)

Để phương trình có hai nghiệm phân biệt thì \(\Delta>0\Leftrightarrow\left(-5\right)^2-4\left(3m+1\right)=21-12m>0\Leftrightarrow m< \frac{7}{4}\)

Theo Viet \(\hept{\begin{cases}x_1+x_2=5\\x_1x_2=3m+1\end{cases}}\)

Vậy \(\left|x_1^2-x_2^2\right|=15\Leftrightarrow\left(x_1+x_2\right)^2\left(x_1-x_2\right)^2=225\Leftrightarrow\left(x_1+x_2\right)^2\left[\left(x_1+x_2\right)^2-4x_1x_2\right]=225\)

\(\Leftrightarrow25\left[25-4\left(3m+1\right)\right]=225\Leftrightarrow21-12m=9\Leftrightarrow m=1\left(tmđk\right)\)

Vậy m = 1.

Chú ý nhớ kĩ định lý Viet nhé, đây là một phần quan trọng đó em. 

Jack Viet
Xem chi tiết
qqqq
Xem chi tiết
Nguyễn Lê Phước Thịnh
12 tháng 6 2023 lúc 22:02

2:

=>x^3-1-2x^3-4x^6+4x^6+4x=6

=>-x^3+4x-7=0

=>x=-2,59

4: =>8x-24x^2+2-6x+24x^2-60x-4x+10=-50

=>-62x+12=-50

=>x=1

Nguyễn Hữu Minh
Xem chi tiết
nthv_.
28 tháng 10 2021 lúc 20:03

\(16x^2+24x+9+9x^2-24x+16+2-10x+10x-25x^2=0\)

\(27=0\left(voly\right)\)

Vậy S vô nghiệm.

Nguyễn Thảo My
Xem chi tiết
Phùng Minh Quân
15 tháng 7 2019 lúc 17:57

1) \(x^2-2mx+m-2=0\) (1) 

pt (1) có \(\Delta'=\left(-m\right)^2-\left(m-2\right)=m^2-m+2=\left(m-\frac{1}{2}\right)^2+\frac{7}{4}>0\left(\forall m\right)\) 

=> pt luôn có 2 nghiệm phân biệt x1, x2 

Vi-et: \(\hept{\begin{cases}x_1+x_2=2m\\x_1x_2=m-2\end{cases}}\)\(\Rightarrow\)\(M=\frac{2x_1x_2-\left(x_1+x_2\right)}{x_1^2+x_2^2-6x_1x_2}=\frac{2x_1x_2-\left(x_1+x_2\right)}{\left(x_1+x_2\right)^2-8x_1x_2}=\frac{2m-4-2m}{\left(2m\right)^2-8m-16}\)

\(=\frac{-4}{4m^2-8m-16}=\frac{-4}{4\left(m-1\right)^2-20}\ge\frac{-4}{-20}=\frac{1}{5}\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(m=1\)

xin 1slot sáng giải