Chứng minh:
\(x^4+y^4\ge\dfrac{\left(x+y\right)^4}{8}\)
please help me
Chứng minh các bất đẳng thức sau với x, y, z > 0
a) \(x^2+y^2\ge\dfrac{\left(x+y\right)^2}{2}\)
b) \(x^3+y^3\ge\dfrac{\left(x+y\right)^3}{4}\)
c) \(x^4+y^4\ge\dfrac{\left(x+y\right)^4}{8}\)
e) \(x^2+y^2+z^2\ge\dfrac{\left(x+y+z\right)^2}{3}\)
f) \(x^3+y^3+z^3\ge3xyz\)
a) \(x^2+y^2\ge\dfrac{\left(x+y\right)^2}{2}\)
\(\Leftrightarrow2x^2+2y^2\ge\left(x+y\right)^2\Leftrightarrow x^2+y^2\ge2xy\)
\(\Leftrightarrow x^2-2xy+y^2\ge0\Leftrightarrow\left(x-y\right)^2\ge0\left(đúng\right)\)
b) \(x^3+y^3\ge\dfrac{\left(x+y\right)^3}{4}\)
\(\Leftrightarrow4x^3+4y^3\ge\left(x+y\right)^3\Leftrightarrow3x^3+3y^3\ge3x^2y+3xy^2\)
\(\Leftrightarrow3x^2\left(x-y\right)-3y^2\left(x-y\right)\ge0\)
\(\Leftrightarrow3\left(x-y\right)\left(x^2-y^2\right)\ge0\Leftrightarrow3\left(x-y\right)^2\left(x+y\right)\ge0\left(đúng\right)\)
a: Ta có: \(x^2+y^2\ge\dfrac{\left(x+y\right)^2}{2}\)
\(\Leftrightarrow2x^2+2y^2-x^2-2xy-y^2\ge0\)
\(\Leftrightarrow x^2-2xy+y^2\ge0\)
\(\Leftrightarrow\left(x-y\right)^2\ge0\)(luôn đúng)
Xét sự biến thiên của hàm số sau:
1, \(y=4-3x\)
2, \(y=x^2+4x-5\)
3, \(y=\dfrac{x}{x-1}trên\left(-\infty;1\right)\)
4, \(y=\dfrac{2}{x-2}trên\left(-\infty;2\right)vàtrên\left(2;+\infty\right)\)
Hi guys, please help me :))))
I need it now !!!!
1 nghịch biến(a<0)
2 đồng biến
3,4 thay các g trị tm đk vào
hojk tốt
Chứng minh :
\(x^4+y^4\ge\dfrac{\left(x+y\right)^4}{8}\)
Mong các bạn giúp mk
Chứng minh các bất đẳng thức:
a) \(x^2+y^2\ge\dfrac{\left(x+y\right)^2}{2}\ge2xy\)
b) \(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\) với \(x>0,y>0\)
a) Với x, y \(\ge\)0. Chứng minh \(\left(\sqrt{x}+\sqrt{y}\right)^2\ge2\sqrt{2\left(x+y\right)\sqrt{xy}}\)
b) Cho x, y, z, t \(\ge\)0. Chứng minh: \(\dfrac{x+y+z+t}{4}\ge\sqrt[4]{xyzt}\)
a)Áp dụng BĐT AM-GM ta có:
\(\left(\sqrt{x}+\sqrt{y}\right)^2=x+y+2\sqrt{xy}\)
\(\ge2\sqrt{\left(x+y\right)\cdot2\sqrt{xy}}=VP\)
Xảy ra khi \(x=y\)
b)\(BDT\Leftrightarrow x+y+z+t\ge4\sqrt[4]{xyzt}\)
Đúng với AM-GM 4 số
Xảy ra khi \(x=y=z=t\)
Chứng minh \(x^4+y^4\ge\frac{\left(x+y\right)^4}{8}\)
\(x^4+y^4\ge\frac{\left(x^2+y^2\right)^2}{2}\ge\frac{\left[\frac{\left(x+y\right)^2}{2}\right]^2}{2}=\frac{\left(x+y\right)^4}{8}\)(bđt Cauchy - Schwarz)
cho x, y là các số dương và x + y = 1. Chứng minh rằng : P = \(\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\sqrt{1+x^2y^2}\ge\sqrt{17}\)
HELP ME!!!!!
Lời giải:
Ta có:
\(\text{VT}=\left(\frac{1}{x}+\frac{1}{y}\right)\sqrt{1+x^2y^2}=\frac{x+y}{xy}\sqrt{1+x^2y^2}=\frac{\sqrt{1+x^2y^2}}{xy}\)
Giờ thì biến đổi tương đương thôi. Ta có:
\(\text{VT}\geq \sqrt{17}\)
\(\Leftrightarrow \frac{\sqrt{1+x^2y^2}}{xy}\geq \sqrt{17}\)
\(\Leftrightarrow \frac{1+x^2y^2}{x^2y^2}\geq 17\) (do \(x,y\) dương)
\(\Leftrightarrow 1+x^2y^2\geq 17x^2y^2\Leftrightarrow 1\geq 16x^2y^2\)
\(\Leftrightarrow (1-4x)(1+4xy)\geq 0\)
BĐT trên luôn đúng do $x,y>0$ và theo BĐT AM-GM thì:
\(1=x+y\geq 2\sqrt{xy}\Rightarrow xy\leq \frac{1}{4}\Rightarrow 1-4xy\geq 0\)
Do đó ta có đpcm.
Dấu bằng xảy ra khi \(x=y=\frac{1}{2}\)
\(Cho\) \(x,y\) thuộc R+ , thỏa mãn xy=1
chứng minh \(\left(x+y+1\right)\left(x^2+y^2\right)+\frac{4}{x+y}>=8\)
help me help me
\(x^8+y^8\ge x^2.y^2.\left(x^4+y^4\right)\)
Chứng minh
Chứng minh bằng biến đổi tương đương:
\(x^8+y^8\ge x^2y^2\left(x^4+y^4\right)\)
\(\Leftrightarrow x^8-x^6y^2+y^8-x^2y^6\ge0\)
\(\Leftrightarrow x^6\left(x^2-y^2\right)-y^6\left(x^2-y^2\right)\ge0\)
\(\Leftrightarrow\left(x^6-y^6\right)\left(x^2-y^2\right)\ge0\)
\(\Leftrightarrow\left[\left(x^2\right)^3-\left(y^2\right)^3\right]\left(x^2-y^2\right)\ge0\)
\(\Leftrightarrow\left(x^2-y^2\right)\left(x^4+x^2y^2+y^4\right)\left(x^2-y^2\right)\ge0\)
\(\Leftrightarrow\left(x^2-y^2\right)^2\left(x^4+x^2y^2+y^4\right)\ge0\) (luôn đúng với mọi x;y)
Vậy BĐT đã cho được chứng minh.