Cho tỉ lệ thức \(\dfrac{a}{b}=\dfrac{c}{d}.CMR:\dfrac{ab}{cd}=\dfrac{a^2-b^2}{c^2-d^2}\)
1. Cho tỉ lệ thức \(\dfrac{a}{b}\) = \(\dfrac{c}{d}\). CMR:
a) \(\dfrac{3a+5c}{3b+5d}\) = \(\dfrac{a-2c}{b-2d}\).
b) \(\dfrac{a^2-b^2}{ab}\) = \(\dfrac{c^2-d^2}{cd}\).
c) \(\dfrac{\left(a+b\right)^2}{a^2+b^2}\) = \(\dfrac{\left(c+d\right)^2}{c^2+d^2}\).
d) \(\left(\dfrac{a+b}{c+d}\right)^3\) = \(\dfrac{a^3+b^3}{c^3+d^3}\).
Gíup mình với cảm ơn các bạn rất nhiều!!!!!!!!!
Ta có:
\(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow a=bk;c=dk\)
a) \(\dfrac{3a+5c}{3b+5d}=\dfrac{3\cdot bk+5\cdot dk}{3b+5d}=\dfrac{k\left(3b+5d\right)}{3b+5d}=k\) (1)
\(\dfrac{a-2c}{b-2d}=\dfrac{bk-2dk}{b-2d}=\dfrac{k\left(b-2d\right)}{b-2d}=k\) (2)
Từ (1) và (2) \(\Rightarrow\dfrac{3a+5c}{3b+5d}=\dfrac{a-2c}{b-2d}\left(dpcm\right)\)
b) \(\dfrac{a^2-b^2}{ab}=\dfrac{\left(bk\right)^2-b^2}{bk\cdot b}=\dfrac{b^2k^2-b^2}{b^2k}=\dfrac{b^2\left(k-1\right)}{b^2k}=\dfrac{k-1}{k}\)(1)
\(\dfrac{c^2-d^2}{cd}=\dfrac{\left(dk\right)^2-d^2}{dk\cdot d}=\dfrac{d^2k^2-d^2}{d^2k}=\dfrac{d^2\left(k-1\right)}{d^2k}=\dfrac{k-1}{k}\) (2)
Từ (1) và (2) \(\Rightarrow\dfrac{a^2-b^2}{ab}=\dfrac{c^2-d^2}{cd}\left(dpcm\right)\)
c) \(\left(\dfrac{a+b}{c+d}\right)^3=\left(\dfrac{bk+b}{dk+d}\right)^3=\dfrac{b^3\left(k+1\right)^3}{d^3\left(k+1\right)^3}=\dfrac{b^3}{d^3}\) (1)
\(\dfrac{a^3+b^3}{c^3+d^3}=\dfrac{\left(bk\right)^3+b^3}{\left(dk\right)^3+d^3}=\dfrac{b^3k^3+b^3}{d^3k^3+d^3}=\dfrac{b^3\left(k^3+1\right)}{d^3\left(k^3+1\right)}=\dfrac{b^3}{d^3}\) (2)
Từ (1) và (2) \(\Rightarrow\left(\dfrac{a+b}{c+d}\right)^3=\dfrac{a^3+b^3}{c^3+d^3}\left(dpcm\right)\)
giúp mình câu d) luôn nha phong
cảm ơn phong nha
Cho tỉ lệ thức \(\dfrac{a}{b}=\dfrac{c}{d}\) . Chứng minh rằng ta có các tỉ lệ thức sau (giả thiết các tỉ lệ thức là có nghĩa ) :
a) \(\dfrac{ab}{cd}=\dfrac{a^2-b^2}{c^2-d^2}\)
b) \(\left(\dfrac{a+b}{c+d}\right)^2=\dfrac{a^2+b^2}{c^2+d^2}\)
1) Cho tỉ lệ thức \(\dfrac{a}{b}=\dfrac{c}{d}\). CMR(với giả thiết các tỉ số đều có nghĩa)
a)\(\dfrac{a-b}{a+b}=\dfrac{c-d}{c+d}\)
b)\(\dfrac{ab}{cd}=\dfrac{\left(a-b\right)^2}{\left(c-d\right)^2}\)
c)\(\dfrac{2a+5b}{3a-4b}=\dfrac{2c+5d}{3c-4d}\)
2) Cho tỉ lệ thức \(\dfrac{a}{b}=\dfrac{c}{d}\). CMR ta có các tỉ lệ thức sau
a)\(\dfrac{a}{a+b}=\dfrac{c}{c+d}\)
b)\(\dfrac{7a1^2+5ac}{7a^2-5ac}=\dfrac{7b^2+5bd}{7b^2-5bd}\)
3) CMR nếu \(a^2=bc\) thì \(\dfrac{a+b}{a-b}=\dfrac{c+a}{c-a}\). Đảo lại có đúng không?
4) CMR nếu \(\dfrac{a}{b}=\dfrac{b}{d}\) thì \(\dfrac{a^2+b^2}{b^2+d^2}=\dfrac{a}{d}\)
5) Cho tỉ lệ thức \(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{ab}{cd}.CMR\dfrac{a}{b}=\dfrac{c}{d}\)
các bn giúp bn Heo Mách với nha
Bài 2:
Đặt a/b=c/d=k
=>a=bk; c=dk
a: \(\dfrac{a}{a+b}=\dfrac{bk}{bk+b}=\dfrac{k}{k+1}\)
\(\dfrac{c}{c+d}=\dfrac{dk}{dk+d}=\dfrac{k}{k+1}\)
Do đó: \(\dfrac{a}{a+b}=\dfrac{c}{c+d}\)
b: \(\dfrac{7a^2+5ac}{7a^2-5ac}=\dfrac{7\cdot b^2k^2+5\cdot bk\cdot dk}{7\cdot b^2k^2-5\cdot bk\cdot dk}\)
\(=\dfrac{7b^2k^2+5bdk^2}{7b^2k^2-5bdk^2}=\dfrac{7b^2+5bd}{7b^2-5bd}\)(đpcm)
Cho tỉ lệ thức \(\dfrac{a}{b}=\dfrac{c}{d}\). CMR: \(\dfrac{a^2-b^2}{ab}=\dfrac{c^2-d^2}{cd}\)
Từ \(\dfrac{a}{b}=\dfrac{c}{d}\)
=> \(\dfrac{a}{c}=\dfrac{b}{d}\)
=> \(\dfrac{a}{c}\).\(\dfrac{b}{d}=\dfrac{ab}{cd}=\dfrac{a}{c}\).\(\dfrac{a}{c}=\dfrac{b}{d}\).\(\dfrac{b}{d}\) \(=\dfrac{a^2}{c^2}=\dfrac{b^2}{d^2}\) (1)
Áp dụng t/c dãy tỉ số bằng nhau:
\(\dfrac{a^2}{c^2}=\dfrac{b^2}{d^2}=\dfrac{a^2-b^2}{c^2-d^2}\) (2)
=> \(\dfrac{a^2-b^2}{c^2-d^2}=\dfrac{ab}{cd}\)
=> \(\dfrac{a^2-b^2}{ab}=\dfrac{c^2-d^2}{cd}\) (ĐPCM)
Cho tỉ lệ thức \(\dfrac{a}{b}=\dfrac{c}{d}\). CMR : \(\dfrac{ab}{cd}=\dfrac{a^2-b^2}{c^2-d^2}\) và \(\left(\dfrac{a+b}{c+d}\right)^2=\dfrac{a^2+b^2}{c^2+d^2}\)
\(\dfrac{a}{b}=\dfrac{c}{d}\\ \Rightarrow\dfrac{a}{c}=\dfrac{b}{d}\\ \Rightarrow\dfrac{a^2}{c^2}=\dfrac{b^2}{d^2}=\dfrac{a^2-b^2}{c^2-d^2}\\ \dfrac{a^2}{c^2}=\dfrac{a}{c}.\dfrac{a}{c}=\dfrac{a}{c}.\dfrac{b}{d}=\dfrac{ab}{cd}\\ \Rightarrow\dfrac{ab}{cd}=\dfrac{a^2-b^2}{c^2-d^2}\)
Có thể dùng cách khác:v
a)\(\dfrac{a}{b}=\dfrac{c}{d}\Leftrightarrow\dfrac{a}{c}=\dfrac{b}{d}=t\)(với t là 1 số thực bất kì thỏa mãn)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{a}{c}.\dfrac{b}{d}=\dfrac{ab}{cd}=t^2\\\dfrac{a^2}{c^2}=\dfrac{b^2}{d^2}=\dfrac{a^2-b^2}{c^2-d^2}=t^2\end{matrix}\right.\Rightarrowđpcm\)
Tương tự:v
Cho tỉ lệ thức \(\dfrac{a}{b}=\dfrac{c}{d}\)
CMR \(\dfrac{ab}{cd}=\dfrac{a^2-b^2}{c^2-d^2}\) và \(\left(\dfrac{a+b}{c+d}\right)^2=\dfrac{a^2+b^2}{c^2+d^2}\)
\(\dfrac{a}{b}=\dfrac{c}{d}=k\)
=>a=bk và c=dk
ta có \(\dfrac{a^2-b^2}{c^2-d^2}=\dfrac{\left(bk\right)^2-b^2}{\left(dk\right)^2-d^2}=\dfrac{b^2k^2-b^2}{d^2k^2-d^2}=\dfrac{b^2\left(k^2-1\right)}{d^2\left(k^2-1\right)}=\dfrac{b^2}{d^2}\)\(\dfrac{ab}{cd}=\dfrac{bk.b}{bk.d}=\dfrac{b^2}{d^2}\)
=>\(\dfrac{ab}{cd}=\dfrac{a^2-b^2}{c^2-d^2}\) (cùng =\(\dfrac{b^2}{d^2}\) ) (đpcm)
\(\dfrac{a}{b}=\dfrac{c}{d}\Leftrightarrow\dfrac{a}{c}=\dfrac{b}{d}\)
Đặt: \(\dfrac{a}{c}=\dfrac{b}{d}=t\)
a) \(\left\{{}\begin{matrix}\dfrac{ab}{cd}=t^2\\\dfrac{a^2}{c^2}=\dfrac{b^2}{d^2}=\dfrac{a^2-b^2}{c^2-d^2}\end{matrix}\right.\Rightarrowđpcm\)
b) \(\left\{{}\begin{matrix}\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a+b}{c+d}\Leftrightarrow\left(\dfrac{a+b}{c+d}\right)^2=t^2\\\dfrac{a^2}{c^2}=\dfrac{b^2}{d^2}=\dfrac{a^2+b^2}{c^2+d^2}=t^2\end{matrix}\right.\Rightarrowđpcm\)
Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k:\)
Nên a=kb, c=kd
Do đó: \(\dfrac{ab}{cd}=\dfrac{kbb}{kdd}=\dfrac{kb^2}{kd^2}=\dfrac{b^2}{d^2}\)
Và: \(\dfrac{a^2-b^2}{c^2-d^2}=\dfrac{\left(kb\right)^2-b^2}{\left(kd\right)^2-d^2}=\dfrac{b^2\left(k^2-1\right)}{d^2\left(k^2-1\right)}=\dfrac{b^2}{d^2}\)
Vậy \(\dfrac{ab}{cd}=\dfrac{a^2-b^2}{c^2-d^2}\)
Ta có: \(\left(\dfrac{a+b}{c+d}\right)^2=\dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}=\dfrac{\left(kb+b\right)^2}{\left(kd+d\right)^2}=\dfrac{\left[\left(k+1\right)b\right]^2}{\left[\left(k+1\right)d\right]^2}=\dfrac{\left(k+1\right)^2.b^2}{\left(k+1\right)^2.d^2}=\dfrac{b^2}{d^2} \)
\(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{\left(kb\right)^2+b^2}{\left(kd\right)^2+d^2}=\dfrac{\left(k^2+1\right)b^2}{\left(k^2+1\right)d^2}=\dfrac{b^2}{d^2}\)
Vậy \(\left(\dfrac{a+b}{c+d}\right)^2=\dfrac{a^2+b^2}{c^2+d^2}\)
Cho tỉ lệ thức: \(\dfrac{a}{b}=\dfrac{c}{d}.\) Chứng minh các tỉ lệ thức sau:
\(\dfrac{a^2-b^2}{ab}=\dfrac{c^2-d^2}{cd};\dfrac{\left(c+d\right)^2}{c^2+d^2}\)
Cho tỉ lệ thức \(\dfrac{a}{b}=\dfrac{c}{d}\) với \(a,b,c,d\ne0\). Chứng minh \(\dfrac{\left(a-b\right)^2}{\left(c-d\right)^2}=\dfrac{ab}{cd}\)
Đặt: \(\dfrac{a}{b}=\dfrac{c}{d}=k\)
\(\Rightarrow a=bk,c=dk\)
Ta có VT:
\(\dfrac{\left(a-b\right)^2}{\left(c-d\right)^2}=\dfrac{\left(bk-b\right)^2}{\left(dk-d\right)^2}\)
\(=\dfrac{b^2\left(k-1\right)^2}{d^2\left(k-1\right)^2}=\dfrac{b^2}{d^2}\) (1)
VT: \(\dfrac{ab}{cd}=\dfrac{bk\cdot b}{dk\cdot d}=\dfrac{b^2k}{d^2k}=\dfrac{b^2}{d^2}\) (2)
Từ (1) và (2)
\(\Rightarrow\dfrac{\left(a-b\right)^2}{\left(c-d\right)^2}=\dfrac{ab}{cd}\left(đpcm\right)\)
Có: \(\dfrac{a}{b}=\dfrac{c}{d}\Leftrightarrow ab=cd\Leftrightarrow\dfrac{a}{c}=\dfrac{b}{d}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a-b}{c-d}\)\(\Leftrightarrow\left(\dfrac{a}{c}\right)^2=\left(\dfrac{b}{d}\right)^2=\dfrac{ab}{cd}=\left(\dfrac{a-b}{c-d}\right)^2\)
Vậy...
cho tỉ lệ thức \(\dfrac{a}{b}=\dfrac{c}{d}\)(b\(\ne\)0;d\(\ne\)0)
c)\(\dfrac{ab}{cd}=\dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}\)
d)\(\dfrac{3c^2+5a^2}{3d^2+5b^2}=\dfrac{c^2}{d^2}\)
d: Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)
Ta có: \(\dfrac{3c^2+5a^2}{3d^2+5b^2}=\dfrac{3\cdot\left(dk\right)^2+5\cdot\left(bk\right)^2}{3d^2+5b^2}=k^2\)
\(\dfrac{c^2}{d^2}=\dfrac{\left(dk\right)^2}{d^2}=k^2\)
Do đó: \(\dfrac{3c^2+5a^2}{3d^2+5b^2}=\dfrac{c^2}{d^2}\)