Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thị Hằng
Xem chi tiết
Nguyen
15 tháng 1 2019 lúc 20:54

a)\(\Leftrightarrow\left\{{}\begin{matrix}25x+15y=40xy\left(1\right)\\24x+16y=40xy\left(2\right)\end{matrix}\right.\)

Lấy (1) trừ (2), ta được: x-y=0\(\Leftrightarrow x=y\)

Thay vào 5x+3y=8xy ta được: \(5x+3x=8x^2\)\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\).\(\Rightarrow\left[{}\begin{matrix}x=y=0\\x=y=1\end{matrix}\right.\)

Vậy hpt có nghiệm (0;0);(1;1).

b)\(\Leftrightarrow\left\{{}\begin{matrix}-5x+5y=5xy\left(1\right)\\4x+3y=5xy\left(2\right)\end{matrix}\right.\)

Lấy (2) trừ (1) ta được: 9x-2y=0 \(\Leftrightarrow y=\dfrac{9x}{2}\)

Thay vào -x+y=xy ta được: \(-x+\dfrac{9x}{2}=x^2\)

\(\Leftrightarrow-2x+9x=2x^2\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(TM\right)\\x=\dfrac{7}{2}\left(KTM\right)\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}y=0\left(TM\right)\\y=\dfrac{63}{4}\left(KTM\right)\end{matrix}\right.\)

Vậy hpt có nghiệm (0;0).

c) Từ 2x-y=5\(\Rightarrow y=2x-5\)

Thay vào \(\left(x+y+2\right)\left(x+2y-5\right)=0\), ta được:

\(\left(3x-3\right)\left(5x-15\right)=0\)\(\Leftrightarrow\left[{}\begin{matrix}x=3\left(TM\right)\\x=5\left(KTM\right)\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}y=1\left(TM\right)\\y=5\left(KTM\right)\end{matrix}\right.\)

Vậy hpt có nghiệm (3;1).

Kim Trí Ngân
Xem chi tiết
Thảo
Xem chi tiết
Kimian Hajan Ruventaren
Xem chi tiết
Trần Thanh Phương
28 tháng 3 2021 lúc 10:45

a) \(\left\{{}\begin{matrix}2x^2-5xy-y^2=1\\y\left(\sqrt{xy-2y^2}+\sqrt{4y^2-xy}\right)=1\end{matrix}\right.\)

ĐKXĐ:...

\(\Rightarrow y\left(\sqrt{xy-2y^2}+\sqrt{4y^2-xy}\right)=2x^2-5xy-y^2\)

Từ giả thiết dễ thấy \(y\ne0\), chia cả 2 vế cho \(y^2\) ta được:

\(\dfrac{\sqrt{xy-2y^2}+\sqrt{4y^2-xy}}{y}=\dfrac{2x^2-5xy-y^2}{y^2}\)

\(\Leftrightarrow\sqrt{\dfrac{xy-2y^2}{y^2}}+\sqrt{\dfrac{4y^2-xy}{y^2}}=2\left(\dfrac{x}{y}\right)^2-\dfrac{5x}{y}-1\)

\(\Leftrightarrow\sqrt{\dfrac{x}{y}-2}+\sqrt{4-\dfrac{x}{y}}=2\left(\dfrac{x}{y}\right)^2-5\dfrac{x}{y}-1\)

Đặt \(\dfrac{x}{y}=t\) \(\left(2\le t\le4\right)\)

\(\Leftrightarrow\sqrt{t-2}+\sqrt{4-t}=2t^2-5t-1\)

\(\Leftrightarrow\sqrt{t-2}-1+\sqrt{4-t}-1=2t^2-5t-3\)

\(\Leftrightarrow\left(t-3\right)\left(2t+1\right)=\dfrac{t-3}{\sqrt{t-2}+1}+\dfrac{3-t}{\sqrt{4-t}+1}\)

\(\Leftrightarrow\left(t-3\right)\left(2t+1-\dfrac{1}{\sqrt{t-2}+1}+\dfrac{1}{\sqrt{4-t}+1}\right)=0\)

Xét \(2t+1-\dfrac{1}{\sqrt{t-2}+1}+\dfrac{1}{\sqrt{4-t}+1}=2t+\dfrac{\sqrt{t-2}}{\sqrt{t-2}+1}+\dfrac{1}{\sqrt{4-t}+1}>0\forall t\)

\(\Rightarrow t-3=0\)

\(\Leftrightarrow t=3\)

\(\Leftrightarrow\dfrac{x}{y}=3\Leftrightarrow x=3y\)

Thế vào phương trình \(\left(1\right):2\cdot9y^2-5y\cdot3y-y^2-1=0\)

\(\Leftrightarrow2y^2-1=0\)

\(\Leftrightarrow y=\dfrac{1}{\sqrt{2}}\) do \(y>0\)

\(\Leftrightarrow x=\dfrac{3}{\sqrt{2}}\)

Vậy tập nghiệm của phương trình \(\left(x;y\right)=\left(\dfrac{3}{\sqrt{2}};\dfrac{1}{\sqrt{2}}\right)\)

b) \(\left\{{}\begin{matrix}x^3+1=2\left(x^2-x+y\right)\\y^3+1=2\left(y^2-y+x\right)\end{matrix}\right.\)

Trừ theo vế 2 phương trình ta được:

\(x^3-y^3=2\left(x^2-y^2-2x+2y\right)\)

\(\Leftrightarrow\left(x-y\right)\left(x^2+xy+y^2\right)-2\left(x-y\right)\left(x+y\right)+4\left(x-y\right)=0\)

\(\Leftrightarrow\left(x-y\right)\left(x^2+xy+y^2-2\left(x+y\right)+4\right)=0\)

Xét phương trình \(x^2+x\left(y-2\right)+y^2-2y+4=0\)

\(\Delta_x=\left(y-2\right)^2-4\left(y^2-2y+4\right)=-3y^2+4y-8< 0\) nên phương trình vô nghiệm.

Do đó \(x=y\)

Thế vào phương trình \(\left(1\right):x^3+1=2x^2\)

\(\Leftrightarrow\left(x-1\right)\left(x^2-x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1+\sqrt{5}}{2}\\x=\dfrac{1-\sqrt{5}}{2}\end{matrix}\right.\)

Vậy...

junghyeri
Xem chi tiết
An Trịnh Hữu
27 tháng 9 2017 lúc 15:11

Ôn tập cuối năm phần số họcÔn tập cuối năm phần số học

ha dinh
Xem chi tiết
dilan
Xem chi tiết
Duong Thi Nhuong
Xem chi tiết
An Trịnh Hữu
27 tháng 9 2017 lúc 15:07

Hỏi đáp Toán

Ngô Tấn Đạt
27 tháng 9 2017 lúc 21:25

\(\left(x+1\right)\left(y+1\right)=8\\ \Rightarrow xy+x+y+1=8\\ \Rightarrow xy+x+y=7\)

\(x\left(x+1\right)+y\left(y+1\right)+xy=17\\ \Rightarrow x^2+y^2+x+y+xy=17\\ \Rightarrow x^2+y^2=10\)

Lê Đức Mạnh
Xem chi tiết
Andromeda Galaxy
3 tháng 2 2019 lúc 19:57

Câu a: Thế y=5-2x rồi giải pt bậc2

Câu b : từ pt thứ 2, tương đương (x-3)(y-3)=0, xét 2 TH rồi thế vào pt thứ 1

Câu c: từ pt 1 suy ra 2x = 2-3y

Nhân 2 vào pt 2 rồi thế vào