Tìm GTLN của:
Q = \(\dfrac{3\left(x+1\right)}{x^{3^{ }}+x^2+x+1}\)
help me please❤⚽☘
\(\left\{{}\begin{matrix}\dfrac{3}{x-1}-\dfrac{1}{y+2}=\dfrac{3}{4}\\\dfrac{5}{x-1}+\dfrac{3}{y+2}=\dfrac{29}{12}\end{matrix}\right.\)giải chi tiết giúp mình nha☘⚽✿❤ mình cảm ơn nha
\(\dfrac{1}{5}\).\(\left(x+\dfrac{1}{5}\right)\)\(+\)\(\dfrac{2}{5}\)\(\left(x+\dfrac{5}{3}\right)\)\(=\)\(\dfrac{98}{75}\)
help me please :D
\(\dfrac{1}{5}\left(x+\dfrac{1}{5}\right)+\dfrac{2}{5}\left(x+\dfrac{5}{3}\right)=\dfrac{98}{75}\\ =>\dfrac{1}{5}x+\dfrac{1}{25}+\dfrac{2}{5}x+\dfrac{2}{3}=\dfrac{98}{75}\\ =>\dfrac{3}{5}x=\dfrac{98}{75}-\dfrac{2}{3}-\dfrac{1}{25}=\dfrac{3}{5}\\ =>x=1\)
\(\dfrac{1}{5}\left(x+\dfrac{1}{5}\right)+\dfrac{2}{5}\left(x+\dfrac{5}{3}\right)=\dfrac{98}{75}\\ \Rightarrow\dfrac{1}{5}x+\dfrac{1}{25}+\dfrac{2}{5}x+\dfrac{2}{3}=\dfrac{98}{75}\\ \Rightarrow\left(\dfrac{1}{5}x+\dfrac{2}{5}x\right)+\left(\dfrac{1}{25}+\dfrac{2}{3}\right)=\dfrac{98}{75}\\ \Rightarrow\dfrac{3}{5}x+\dfrac{53}{75}=\dfrac{98}{75}\\ \Rightarrow\dfrac{3}{5}x=\dfrac{98}{75}-\dfrac{53}{75}\\ \Rightarrow\dfrac{3}{5}x=\dfrac{45}{75}=\dfrac{3}{5}\\ \Rightarrow x=\dfrac{3}{5}:\dfrac{3}{5}\\ \Rightarrow x=1\)
\(\dfrac{1}{5}\)x(X+\(\dfrac{1}{5}\))+\(\dfrac{2}{5}\)x(X+\(\dfrac{5}{3}\)) = \(\dfrac{98}{75}\)
=> \(\dfrac{1}{5}\)X+\(\dfrac{2}{5}\)+\(\dfrac{6}{15}\)X+\(\dfrac{31}{15}\) = \(\dfrac{98}{75}\)
=> (\(\dfrac{1}{5}\)X+\(\dfrac{6}{15}\)X)+(\(\dfrac{2}{5}\)+\(\dfrac{31}{15}\)) =\(\dfrac{98}{75}\)
=> X x(\(\dfrac{1}{5}\)+\(\dfrac{6}{15}\))+(\(\dfrac{6}{15}\)+\(\dfrac{31}{15}\)) =\(\dfrac{98}{75}\)
=> X x(\(\dfrac{3}{15}\)+\(\dfrac{6}{15}\))+\(\dfrac{37}{15}\) = \(\dfrac{98}{75}\)
=>X x\(\dfrac{9}{15}\)+\(\dfrac{37}{15}\) =\(\dfrac{98}{75}\)
=>X x\(\dfrac{9}{15}\) =\(\dfrac{98}{75}\)-\(\dfrac{37}{15}\)
=>X =\(\dfrac{-29}{25}\):\(\dfrac{9}{15}\)
=>X =\(\dfrac{-29}{15}\)
Tìm GTLN hoặc GTNN :
A = \(\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)
B = \(\dfrac{4}{\left(x-\dfrac{2}{3}\right)^2+9}\)
Help me!!!a, Ta có: \(\left(x-\dfrac{1}{2}\right)^2\ge0\)
\(\Leftrightarrow A=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
Dấu " = " khi \(\left(x-\dfrac{1}{2}\right)^2=0\Leftrightarrow x=\dfrac{1}{2}\)
Vậy \(MIN_A=\dfrac{3}{4}\) khi \(x=\dfrac{1}{2}\)
b, Để B lớn nhất thì \(\left(x-\dfrac{2}{3}\right)^2+9\) nhỏ nhất
Ta có: \(\left(x-\dfrac{2}{3}\right)^2+9\ge9\)
\(\Leftrightarrow B=\dfrac{4}{\left(x-\dfrac{2}{3}\right)^2+9}\le\dfrac{4}{9}\)
Dấu " = " khi \(\left(x-\dfrac{2}{3}\right)^2=0\Leftrightarrow x=\dfrac{2}{3}\)
Vậy \(MAX_B=\dfrac{4}{9}\) khi \(x=\dfrac{2}{3}\)
\(\dfrac{\left(X-1\right)^2}{9}\) = \(\dfrac{3}{X-1}\)
TÌM X ?
HELP ME, PLEASE
Ta có:
\(\dfrac{\left(x-1\right)^2}{9}=\dfrac{3}{x-1}\)
=> (x - 1)2 . (x - 1) = 9 . 3
(x - 1)3 = 27
=> \(x=\sqrt[3]{27}+1=3+1=4\)
Vậy x = 4
Tính nhanh
A=\(\dfrac{1}{\left(x+1\right)\left(x+3\right)}+\dfrac{1}{\left(x+3\right)\left(x+5\right)}+\dfrac{1}{\left(x+5\right)\left(x+7\right)}+\dfrac{1}{\left(x+7\right)\left(x+9\right)}+\dfrac{1}{\left(x+9\right)\left(x+11\right)}\)
help me please
\(A=\dfrac{1}{\left(x+1\right)\left(x+3\right)}+\dfrac{1}{\left(x+3\right)\left(x+5\right)}+\dfrac{1}{\left(x+5\right)\left(x+7\right)}+\dfrac{1}{\left(x+7\right)\left(x+9\right)}+\dfrac{1}{\left(x+9\right)\left(x+11\right)}\)\(A=\dfrac{1}{2}\left(\dfrac{1}{x+1}-\dfrac{1}{x+3}+\dfrac{1}{x+3}-\dfrac{1}{x+5}+\dfrac{1}{x+5}-\dfrac{1}{x+7}+\dfrac{1}{x+7}-\dfrac{1}{x+9}+\dfrac{1}{x+9}-\dfrac{1}{x+11}\right)\)
\(A=\dfrac{1}{2}\left(\dfrac{1}{x+1}-\dfrac{1}{x+11}\right)\)
\(A=\dfrac{1}{2}\left(\dfrac{x+11}{\left(x+1\right)\left(x+11\right)}-\dfrac{x+1}{\left(x+1\right)\left(x+11\right)}\right)\)
\(A=\dfrac{1}{2}\left(\dfrac{x+11-x-1}{\left(x+1\right)\left(x+11\right)}\right)=\dfrac{1}{2}.\dfrac{10}{\left(x+1\right)\left(x+11\right)}=\dfrac{10}{2\left(x+1\right)\left(x+11\right)}\)
Xét sự biến thiên của hàm số sau:
1, \(y=4-3x\)
2, \(y=x^2+4x-5\)
3, \(y=\dfrac{x}{x-1}trên\left(-\infty;1\right)\)
4, \(y=\dfrac{2}{x-2}trên\left(-\infty;2\right)vàtrên\left(2;+\infty\right)\)
Hi guys, please help me :))))
I need it now !!!!
1 nghịch biến(a<0)
2 đồng biến
3,4 thay các g trị tm đk vào
hojk tốt
Giải phương trình:
\(\dfrac{1}{\left(x+1\right)\left(x+2\right)}+\dfrac{1}{\left(x+2\right)\left(x+3\right)}+\dfrac{1}{\left(x+3\right)\left(x+4\right)}=\dfrac{3}{130}\)
Help me now !!!!
\(\dfrac{1}{\left(x+1\right)\left(x+2\right)}+\dfrac{1}{\left(x+2\right)\left(x+3\right)}+\dfrac{1}{\left(x+3\right)\left(x+4\right)}=\dfrac{3}{130}\)
ĐK: \(\left\{{}\begin{matrix}x\ne-1\\x\ne-2\\x\ne-3\\x\ne-4\end{matrix}\right.\)
\(\Leftrightarrow\dfrac{130\left(x+3\right)\left(x+4\right)+130\left(x+1\right)\left(x+4\right)+130\left(x+1\right)\left(x+2\right)}{130\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)}=\dfrac{3\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)}{130\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)}\)
\(\Leftrightarrow3x^2+15x-378=0\)
\(\Leftrightarrow\left(x-9\right)\left(x+14\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=9\\x=-14\end{matrix}\right.\)
@ngonhuminh @Nguyễn Huy Thắng @Đức Minh@Hoang Hung Quan@Nguyễn Huy Tú@Hoàng Thị Ngọc Anh.... và mb khác giúp mik đi mà, cần gấp lắm T_T
bài1: Tìm x
\(\left|x+\dfrac{1}{1.2}\right|+\left|x+\dfrac{1}{2.3}\right|+......+\left|x+\dfrac{1}{99.100}\right|=100x\)
Help me, please! Thanks.
Do mỗi số hạng ở vế trái nằm trong dấu giá trị tuyệt đối mà vế phải 100 là số dương nên x cũng là số dương
Do x dương nên ta có:
\(x+\dfrac{1}{1.2}+x+\dfrac{1}{2.3}+...+x+\dfrac{1}{99.100}=100x\)
Dãy trên có 99 số hạng nên
\(99x+\left(x-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\right)\)
\(1-\dfrac{1}{100}=x\Rightarrow x=\dfrac{99}{100}\)
Vậy \(x=\dfrac{99}{100}\)
Tìm x :\(\left(x-\dfrac{1}{2}\right)^2-\dfrac{1}{3}=\dfrac{23}{12}\)
HELP ME!
\(\left(x-\dfrac{1}{2}\right)^2-\dfrac{1}{3}=\dfrac{23}{12}\\ \Rightarrow\left(x-\dfrac{1}{2}\right)^2=\dfrac{23}{12}+\dfrac{1}{3}=\dfrac{9}{4}\\ \Rightarrow\left[{}\begin{matrix}x-\dfrac{1}{2}=\dfrac{3}{2}\\x-\dfrac{1}{2}=-\dfrac{3}{2}\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}+\dfrac{1}{2}=2\\x=-\dfrac{3}{2}+\dfrac{1}{2}=-1\end{matrix}\right.\)
\(\left(x-\dfrac{1}{2}\right)^2-\dfrac{1}{3}=\dfrac{23}{12}\)
\(\Rightarrow\left(x-\dfrac{1}{2}\right)^2=\dfrac{23}{12}+\dfrac{1}{3}\)
\(\Rightarrow\left(x-\dfrac{1}{2}\right)^2=\dfrac{9}{4}=\left(\dfrac{3}{2}\right)^2\)
\(\Rightarrow\left[{}\begin{matrix}x-\dfrac{1}{2}=\dfrac{3}{2}\\x-\dfrac{1}{2}=-\dfrac{3}{2}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)