Do mỗi số hạng ở vế trái nằm trong dấu giá trị tuyệt đối mà vế phải 100 là số dương nên x cũng là số dương
Do x dương nên ta có:
\(x+\dfrac{1}{1.2}+x+\dfrac{1}{2.3}+...+x+\dfrac{1}{99.100}=100x\)
Dãy trên có 99 số hạng nên
\(99x+\left(x-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\right)\)
\(1-\dfrac{1}{100}=x\Rightarrow x=\dfrac{99}{100}\)
Vậy \(x=\dfrac{99}{100}\)