Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Anh Nguyễn
Xem chi tiết
Minh Hiếu
12 tháng 10 2021 lúc 20:04

\(A=\) \(\dfrac{x+2}{x-5}\)

\(=\dfrac{\left(x-5\right)+7}{x-5}\)

\(=1+\dfrac{7}{x-5}\)

để \(\dfrac{7}{x-5}\) ∈Z thì 7⋮x-5

⇒x-5∈\(\left(^+_-1,^+_-7\right)\)

Còn lại thì bạn tự tính nha

gấu béo
Xem chi tiết
Nguyễn Lê Phước Thịnh
19 tháng 6 2023 lúc 9:50

a: ĐKXĐ: x>0; x<>1

b: \(A=\dfrac{x+\sqrt{x}-2-x+\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}}=\dfrac{2}{x-1}\)

c: A nguyên

=>x-1 thuộc {1;-1;2;-2}

=>x thuộc {2;3}

Hoàng Ngọc Tuyết Nhung
Xem chi tiết
Mèo Dương
Xem chi tiết
Nguyễn Lê Phước Thịnh
15 tháng 10 2023 lúc 22:24

Biểu thức gì vậy bạn?

Mèo Dương
15 tháng 10 2023 lúc 22:29

tìm các giá trị nguyên của x để biểu thức P=A.B  nhận giá trị nguyên

Linh Ngoc Nguyen
Xem chi tiết
Akai Haruma
31 tháng 12 2020 lúc 14:16

Lời giải:

ĐK: $x\geq 0; x\neq 4; x\neq 9$

a) 

\(P=\frac{2\sqrt{x}-9}{(\sqrt{x}-3)(\sqrt{x}-2)}+\frac{(2\sqrt{x}+1)(\sqrt{x}-2)}{(\sqrt{x}-3)(\sqrt{x}-2)}-\frac{(\sqrt{x}+3)(\sqrt{x}-3)}{(\sqrt{x}-3)(\sqrt{x}-2)}\)

\(=\frac{2\sqrt{x}-9+(2\sqrt{x}+1)(\sqrt{x}-2)-(\sqrt{x}+3)(\sqrt{x}-3)}{(\sqrt{x}-3)(\sqrt{x}-2)}=\frac{x-\sqrt{x}-2}{(\sqrt{x}-3)(\sqrt{x}-2)}\)

\(=\frac{(\sqrt{x}-2)(\sqrt{x}+1)}{(\sqrt{x}-3)(\sqrt{x}-2)}=\frac{\sqrt{x}+1}{\sqrt{x}-3}\)

b) \(P=\frac{\sqrt{x}+1}{\sqrt{x}-3}=1+\frac{4}{\sqrt{x}-3}\)

Với $x$ nguyên, để $P$ nguyên thì $\sqrt{x}-3$ phải là ước nguyên của $4$

Mà $\sqrt{x}-3\geq -3$ nên:

$\Rightarrow \sqrt{x}-3\in\left\{\pm 1;\pm 2;4\right\}$

$\Rightarrow x\in \left\{4;16;1;25;49\right\}$ (đều thỏa mãn.

 

0liver Kem
Xem chi tiết
☆Châuuu~~~(๑╹ω╹๑ )☆
29 tháng 5 2023 lúc 4:56

\(\dfrac{\sqrt{x}-5}{\sqrt{x-3}}=1-\dfrac{2}{\sqrt{x}-3}=P\)

Để P nguyên thì \(2⋮\sqrt{x}-3\Leftrightarrow\sqrt{x}-3\inƯ\left(2\right)=\left\{\pm1,\pm2\right\}\)

\(\begin{matrix}\sqrt{x}-3&-1&-2&1&2\\\sqrt{x}&-2\left(L\right)&1&4&5\\x&&1\left(tm\right)&16\left(tm\right)&25\left(tm\right)\end{matrix}\) 

Mà x nguyên lớn nhất \(\Rightarrow x=25\)

Nguyễn Lê Phước Thịnh
28 tháng 5 2023 lúc 22:41

Để P là số nguyên thì

căn x-3-2 chia hết cho căn x-3

=>căn x-3 thuộc Ư(-2)

mà x nguyên lớn nhất

nên căn x-3=2

=>x=25

Phùng Công Anh
29 tháng 5 2023 lúc 9:35

\(P=\dfrac{\sqrt x-5}{\sqrt x -3}=\dfrac{\sqrt x-3-2}{\sqrt x -3}=1-\dfrac{2}{\sqrt x -3}\)

Để \(P \in Z \Leftrightarrow 2\vdots \sqrt x -3 \Rightarrow \sqrt x -3 \in \text{Ư(2)={1;-1;2;-2}}\)

\(\Rightarrow \sqrt x \in \text{{4;2;5;1}} \Rightarrow x \in \text{{16;4;25;1}}\)

\(\Rightarrow x_{max}=25\)

 

Chóii Changg
Xem chi tiết
Nguyễn Lê Phước Thịnh
23 tháng 8 2021 lúc 21:33

Bài 1:

Để biểu thức nhận giá trị nguyên thì \(3\sqrt{x}+1⋮2\sqrt{x}-1\)

\(\Leftrightarrow6\sqrt{x}+2⋮2\sqrt{x}-1\)

\(\Leftrightarrow2\sqrt{x}-1\in\left\{1;-1;5\right\}\)

\(\Leftrightarrow2\sqrt{x}\in\left\{2;0;6\right\}\)

hay \(x\in\left\{4;0;36\right\}\)

nguyễn công huy
Xem chi tiết
nguyễn công huy
Xem chi tiết
Nguyễn Lê Phước Thịnh
16 tháng 9 2023 lúc 12:42

a: ĐKXĐ: x>=0; x<>25

Sửa đề: \(Q=\dfrac{\sqrt{x}}{\sqrt{x}-5}-\dfrac{10\sqrt{x}}{x-25}-\dfrac{5}{\sqrt{x}+5}\)

\(=\dfrac{x+5\sqrt{x}-10\sqrt{x}-5\sqrt{x}+25}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}=\dfrac{x-10\sqrt{x}+25}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}=\dfrac{\sqrt{x}-5}{\sqrt{x}+5}\)

b: Q=-3/7

=>\(\dfrac{\sqrt{x}-5}{\sqrt{x}+5}=-\dfrac{3}{7}\)

=>7căn x-35=-3căn x-15

=>10căn x=20

=>x=4

c: Q nguyên

=>căn x+5-10 chia hết cho căn x+5

=>căn x+5 thuộc {5;10}

=>căn x thuộc {0;5}

Kết hợp ĐKXĐ, ta được: x=0

Nguyễn Đức Trí
16 tháng 9 2023 lúc 12:52

a) \(Q=\dfrac{\sqrt[]{x}}{\sqrt[]{x}-5}-\dfrac{10\sqrt[]{x}}{x-25}-\dfrac{5}{\sqrt[]{x}-5}\left(1\right)\)

Q có nghĩa \(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x-25\ne0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x\ne25\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow Q=\dfrac{\sqrt[]{x}-5}{\sqrt[]{x}-5}-\dfrac{10\sqrt[]{x}}{x-25}\)

\(\Leftrightarrow Q=1-\dfrac{10\sqrt[]{x}}{x-25}\)

\(\Leftrightarrow Q=\dfrac{x+10\sqrt[]{x}-25}{x-25}\)

\(\Leftrightarrow Q=\dfrac{\left(\sqrt[]{x}-5\right)^2}{\left(\sqrt[]{x}-5\right)\left(\sqrt[]{x}+5\right)}=\dfrac{\sqrt[]{x}-5}{\sqrt[]{x}+5}\)

b) \(Q=-\dfrac{3}{7}\)

\(\Leftrightarrow\dfrac{\sqrt[]{x}-5}{\sqrt[]{x}+5}=-\dfrac{3}{7}\)

\(\Leftrightarrow7\left(\sqrt[]{x}-5\right)=-3\left(\sqrt[]{x}+5\right)\)

\(\Leftrightarrow7\sqrt[]{x}-35=-3\sqrt[]{x}-15\)

\(\Leftrightarrow10\sqrt[]{x}=20\)

\(\Leftrightarrow\sqrt[]{x}=2\Leftrightarrow x=4\)

Nguyễn Đức Trí
16 tháng 9 2023 lúc 13:01

c) \(Q\in Z\Leftrightarrow\dfrac{\sqrt[]{x}-5}{\sqrt[]{x}+5}\in Z\) \(\left(x\in Z^+\right)\)

\(\Leftrightarrow\sqrt[]{x}-5⋮\sqrt[]{x}+5\)

\(\Leftrightarrow\sqrt[]{x}-5-\left(\sqrt[]{x}-5\right)⋮\sqrt[]{x}-5\)

\(\Leftrightarrow\sqrt[]{x}-5-\sqrt[]{x}-5⋮\sqrt[]{x}+5\)

\(\Leftrightarrow-10⋮\sqrt[]{x}+5\)

\(\Leftrightarrow\sqrt[]{x}+5\in U\left(10\right)=\left\{1;2;5;10\right\}\)

\(\Leftrightarrow x\in\left\{0;25\right\}\)

huy tạ
Xem chi tiết
Nguyễn Lê Phước Thịnh
16 tháng 11 2021 lúc 22:17

a: \(A=\dfrac{2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\cdot\dfrac{\sqrt{x}-1}{\sqrt{x}}=\dfrac{2\sqrt{x}+1}{x+\sqrt{x}}\)