Tìm các só nguyên x sao cho A=\(\dfrac{\sqrt{x}-5}{\sqrt{x}+3}\)có giá trị nguyên
Tìm các giá trị nguyên của x để các biểu thức sau có giá trị nguyên
A=\(\dfrac{x+2}{x-5}\) B=\(\dfrac{3x+1}{2-x}\) C=\(\dfrac{\sqrt{x}+3}{\sqrt{x}-2}\) D=\(\dfrac{2\sqrt{x}-1}{\sqrt{x}+3}\)
\(A=\) \(\dfrac{x+2}{x-5}\)
\(=\dfrac{\left(x-5\right)+7}{x-5}\)
\(=1+\dfrac{7}{x-5}\)
để \(\dfrac{7}{x-5}\) ∈Z thì 7⋮x-5
⇒x-5∈\(\left(^+_-1,^+_-7\right)\)
Còn lại thì bạn tự tính nha
Cho biểu thức \(A=\left(\dfrac{\sqrt{x}+2}{x+2\sqrt{x}+1}-\dfrac{\sqrt{x}-2}{x-1}\right)\dfrac{\sqrt{x}+1}{\sqrt{x}}\)
a) Tìm điều kiện của x để A có nghĩa
b) Rút gọn A
c) Tìm các giá trị nguyên của x sao cho giá trị tương ứng của A nguyên
a: ĐKXĐ: x>0; x<>1
b: \(A=\dfrac{x+\sqrt{x}-2-x+\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}}=\dfrac{2}{x-1}\)
c: A nguyên
=>x-1 thuộc {1;-1;2;-2}
=>x thuộc {2;3}
cho biểu thức M=\(\dfrac{2\sqrt{x}-21}{x-9\sqrt{x}+20}-\dfrac{\sqrt{x}+5}{\sqrt{x}-4}+\dfrac{2\sqrt{x}+1}{\sqrt{x}-5},x\ge0,x\ne16,x\ne25\) a) rút gọn rồi tính giá trị của M khi x=3-2\(\sqrt{2}\)
b)tìm tất cả các giá trị nguyên của x sao cho biểu thức M có giá trị nguyên
\(A=\dfrac{2\sqrt{x}}{\sqrt{x}-3}\) và B=\(\dfrac{2}{\sqrt{x}-3}+\dfrac{\sqrt{x}}{\sqrt{x}+3}-\dfrac{3-5\sqrt{x}}{9-x}\) với x ≥ 0,x ≠ 9
Tìm các giá trị nguyên của để biểu thức nhận giá trị nguyên.
tìm các giá trị nguyên của x để biểu thức P=A.B nhận giá trị nguyên
\(P=\dfrac{2\sqrt{x}-9}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}+\dfrac{2\sqrt{x}+1}{\sqrt{x}-3}-\dfrac{\sqrt{x}+3}{\sqrt{x}-2}\)
a) rút gọn P
b) tìm các giá trị nguyên của x để P có giá trị nguyên
Lời giải:
ĐK: $x\geq 0; x\neq 4; x\neq 9$
a)
\(P=\frac{2\sqrt{x}-9}{(\sqrt{x}-3)(\sqrt{x}-2)}+\frac{(2\sqrt{x}+1)(\sqrt{x}-2)}{(\sqrt{x}-3)(\sqrt{x}-2)}-\frac{(\sqrt{x}+3)(\sqrt{x}-3)}{(\sqrt{x}-3)(\sqrt{x}-2)}\)
\(=\frac{2\sqrt{x}-9+(2\sqrt{x}+1)(\sqrt{x}-2)-(\sqrt{x}+3)(\sqrt{x}-3)}{(\sqrt{x}-3)(\sqrt{x}-2)}=\frac{x-\sqrt{x}-2}{(\sqrt{x}-3)(\sqrt{x}-2)}\)
\(=\frac{(\sqrt{x}-2)(\sqrt{x}+1)}{(\sqrt{x}-3)(\sqrt{x}-2)}=\frac{\sqrt{x}+1}{\sqrt{x}-3}\)
b) \(P=\frac{\sqrt{x}+1}{\sqrt{x}-3}=1+\frac{4}{\sqrt{x}-3}\)
Với $x$ nguyên, để $P$ nguyên thì $\sqrt{x}-3$ phải là ước nguyên của $4$
Mà $\sqrt{x}-3\geq -3$ nên:
$\Rightarrow \sqrt{x}-3\in\left\{\pm 1;\pm 2;4\right\}$
$\Rightarrow x\in \left\{4;16;1;25;49\right\}$ (đều thỏa mãn.
P=\(\dfrac{\sqrt{x}-5}{\sqrt{x}-3}\)
tìm các giá trị nguyên lớn nhất để P có giá trị là số nguyên
\(\dfrac{\sqrt{x}-5}{\sqrt{x-3}}=1-\dfrac{2}{\sqrt{x}-3}=P\)
Để P nguyên thì \(2⋮\sqrt{x}-3\Leftrightarrow\sqrt{x}-3\inƯ\left(2\right)=\left\{\pm1,\pm2\right\}\)
\(\begin{matrix}\sqrt{x}-3&-1&-2&1&2\\\sqrt{x}&-2\left(L\right)&1&4&5\\x&&1\left(tm\right)&16\left(tm\right)&25\left(tm\right)\end{matrix}\)
Mà x nguyên lớn nhất \(\Rightarrow x=25\)
Để P là số nguyên thì
căn x-3-2 chia hết cho căn x-3
=>căn x-3 thuộc Ư(-2)
mà x nguyên lớn nhất
nên căn x-3=2
=>x=25
\(P=\dfrac{\sqrt x-5}{\sqrt x -3}=\dfrac{\sqrt x-3-2}{\sqrt x -3}=1-\dfrac{2}{\sqrt x -3}\)
Để \(P \in Z \Leftrightarrow 2\vdots \sqrt x -3 \Rightarrow \sqrt x -3 \in \text{Ư(2)={1;-1;2;-2}}\)
\(\Rightarrow \sqrt x \in \text{{4;2;5;1}} \Rightarrow x \in \text{{16;4;25;1}}\)
\(\Rightarrow x_{max}=25\)
Bài 1:Tìm x để BT có giá trị nguyên:
\(\dfrac{3\sqrt{x}+1}{2\sqrt{x}-1}\)
Bài 2:Cho A =\(\dfrac{2\sqrt{x}+1}{x+1}\)(với x≥0).Tìm x để A có giá trị nguyên
Bài 1:
Để biểu thức nhận giá trị nguyên thì \(3\sqrt{x}+1⋮2\sqrt{x}-1\)
\(\Leftrightarrow6\sqrt{x}+2⋮2\sqrt{x}-1\)
\(\Leftrightarrow2\sqrt{x}-1\in\left\{1;-1;5\right\}\)
\(\Leftrightarrow2\sqrt{x}\in\left\{2;0;6\right\}\)
hay \(x\in\left\{4;0;36\right\}\)
Cho biểu thức
Q=\(\dfrac{\sqrt{x}}{\sqrt{x}-5}-\dfrac{10\sqrt{x}}{x-25}-\dfrac{5}{\sqrt{x}-5}\)
a) Tìm điều kiện của x để biểu thức có nghĩa. Rút gọn Q
b) tìm x để Q=\(\dfrac{-3}{7}\)
c)tìm x nguyên để phân thức Q nhân giá trị nguyên
cho biểu thức q=\(\dfrac{\sqrt{x}}{\sqrt{x}-5}-\dfrac{10\sqrt{x}}{x-25}-\dfrac{5}{\sqrt{x}-5}\)
a) tìm điều kiện của x để biểu thức có nghĩa. rút gọn q
b) tìm x để q=\(\dfrac{-3}{7}\)
c)tìm x nguyên để phân thức q nhân giá trị nguyên
a: ĐKXĐ: x>=0; x<>25
Sửa đề: \(Q=\dfrac{\sqrt{x}}{\sqrt{x}-5}-\dfrac{10\sqrt{x}}{x-25}-\dfrac{5}{\sqrt{x}+5}\)
\(=\dfrac{x+5\sqrt{x}-10\sqrt{x}-5\sqrt{x}+25}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}=\dfrac{x-10\sqrt{x}+25}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}=\dfrac{\sqrt{x}-5}{\sqrt{x}+5}\)
b: Q=-3/7
=>\(\dfrac{\sqrt{x}-5}{\sqrt{x}+5}=-\dfrac{3}{7}\)
=>7căn x-35=-3căn x-15
=>10căn x=20
=>x=4
c: Q nguyên
=>căn x+5-10 chia hết cho căn x+5
=>căn x+5 thuộc {5;10}
=>căn x thuộc {0;5}
Kết hợp ĐKXĐ, ta được: x=0
a) \(Q=\dfrac{\sqrt[]{x}}{\sqrt[]{x}-5}-\dfrac{10\sqrt[]{x}}{x-25}-\dfrac{5}{\sqrt[]{x}-5}\left(1\right)\)
Q có nghĩa \(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x-25\ne0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x\ne25\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow Q=\dfrac{\sqrt[]{x}-5}{\sqrt[]{x}-5}-\dfrac{10\sqrt[]{x}}{x-25}\)
\(\Leftrightarrow Q=1-\dfrac{10\sqrt[]{x}}{x-25}\)
\(\Leftrightarrow Q=\dfrac{x+10\sqrt[]{x}-25}{x-25}\)
\(\Leftrightarrow Q=\dfrac{\left(\sqrt[]{x}-5\right)^2}{\left(\sqrt[]{x}-5\right)\left(\sqrt[]{x}+5\right)}=\dfrac{\sqrt[]{x}-5}{\sqrt[]{x}+5}\)
b) \(Q=-\dfrac{3}{7}\)
\(\Leftrightarrow\dfrac{\sqrt[]{x}-5}{\sqrt[]{x}+5}=-\dfrac{3}{7}\)
\(\Leftrightarrow7\left(\sqrt[]{x}-5\right)=-3\left(\sqrt[]{x}+5\right)\)
\(\Leftrightarrow7\sqrt[]{x}-35=-3\sqrt[]{x}-15\)
\(\Leftrightarrow10\sqrt[]{x}=20\)
\(\Leftrightarrow\sqrt[]{x}=2\Leftrightarrow x=4\)
c) \(Q\in Z\Leftrightarrow\dfrac{\sqrt[]{x}-5}{\sqrt[]{x}+5}\in Z\) \(\left(x\in Z^+\right)\)
\(\Leftrightarrow\sqrt[]{x}-5⋮\sqrt[]{x}+5\)
\(\Leftrightarrow\sqrt[]{x}-5-\left(\sqrt[]{x}-5\right)⋮\sqrt[]{x}-5\)
\(\Leftrightarrow\sqrt[]{x}-5-\sqrt[]{x}-5⋮\sqrt[]{x}+5\)
\(\Leftrightarrow-10⋮\sqrt[]{x}+5\)
\(\Leftrightarrow\sqrt[]{x}+5\in U\left(10\right)=\left\{1;2;5;10\right\}\)
\(\Leftrightarrow x\in\left\{0;25\right\}\)
cho biểu thức A=\(\left(\dfrac{1}{\sqrt{x}-1}+\dfrac{\sqrt{x}}{x-1}\right):\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}\right)\)với x≥0,x≠1
a)rút gọn A
b)tìm x nguyên để M =A.\(\dfrac{\sqrt{x}+2}{2\sqrt{x}+1}+\dfrac{x-\sqrt{x}-5}{\sqrt{x}+3}\)có giá trị nguyên
a: \(A=\dfrac{2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\cdot\dfrac{\sqrt{x}-1}{\sqrt{x}}=\dfrac{2\sqrt{x}+1}{x+\sqrt{x}}\)