a: ĐKXĐ: x>=0; x<>25
Sửa đề: \(Q=\dfrac{\sqrt{x}}{\sqrt{x}-5}-\dfrac{10\sqrt{x}}{x-25}-\dfrac{5}{\sqrt{x}+5}\)
\(=\dfrac{x+5\sqrt{x}-10\sqrt{x}-5\sqrt{x}+25}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}=\dfrac{x-10\sqrt{x}+25}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}=\dfrac{\sqrt{x}-5}{\sqrt{x}+5}\)
b: Q=-3/7
=>\(\dfrac{\sqrt{x}-5}{\sqrt{x}+5}=-\dfrac{3}{7}\)
=>7căn x-35=-3căn x-15
=>10căn x=20
=>x=4
c: Q nguyên
=>căn x+5-10 chia hết cho căn x+5
=>căn x+5 thuộc {5;10}
=>căn x thuộc {0;5}
Kết hợp ĐKXĐ, ta được: x=0
a) \(Q=\dfrac{\sqrt[]{x}}{\sqrt[]{x}-5}-\dfrac{10\sqrt[]{x}}{x-25}-\dfrac{5}{\sqrt[]{x}-5}\left(1\right)\)
Q có nghĩa \(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x-25\ne0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x\ne25\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow Q=\dfrac{\sqrt[]{x}-5}{\sqrt[]{x}-5}-\dfrac{10\sqrt[]{x}}{x-25}\)
\(\Leftrightarrow Q=1-\dfrac{10\sqrt[]{x}}{x-25}\)
\(\Leftrightarrow Q=\dfrac{x+10\sqrt[]{x}-25}{x-25}\)
\(\Leftrightarrow Q=\dfrac{\left(\sqrt[]{x}-5\right)^2}{\left(\sqrt[]{x}-5\right)\left(\sqrt[]{x}+5\right)}=\dfrac{\sqrt[]{x}-5}{\sqrt[]{x}+5}\)
b) \(Q=-\dfrac{3}{7}\)
\(\Leftrightarrow\dfrac{\sqrt[]{x}-5}{\sqrt[]{x}+5}=-\dfrac{3}{7}\)
\(\Leftrightarrow7\left(\sqrt[]{x}-5\right)=-3\left(\sqrt[]{x}+5\right)\)
\(\Leftrightarrow7\sqrt[]{x}-35=-3\sqrt[]{x}-15\)
\(\Leftrightarrow10\sqrt[]{x}=20\)
\(\Leftrightarrow\sqrt[]{x}=2\Leftrightarrow x=4\)
c) \(Q\in Z\Leftrightarrow\dfrac{\sqrt[]{x}-5}{\sqrt[]{x}+5}\in Z\) \(\left(x\in Z^+\right)\)
\(\Leftrightarrow\sqrt[]{x}-5⋮\sqrt[]{x}+5\)
\(\Leftrightarrow\sqrt[]{x}-5-\left(\sqrt[]{x}-5\right)⋮\sqrt[]{x}-5\)
\(\Leftrightarrow\sqrt[]{x}-5-\sqrt[]{x}-5⋮\sqrt[]{x}+5\)
\(\Leftrightarrow-10⋮\sqrt[]{x}+5\)
\(\Leftrightarrow\sqrt[]{x}+5\in U\left(10\right)=\left\{1;2;5;10\right\}\)
\(\Leftrightarrow x\in\left\{0;25\right\}\)