Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
dsadasd
Xem chi tiết
Nguyễn Việt Lâm
31 tháng 3 2021 lúc 5:30

\(x+y=\sqrt{x+6}+\sqrt{y+6}\ge0\Rightarrow x+y\ge0\)

\(x+y=\sqrt{x+6}+\sqrt{y+6}\le\sqrt{2\left(x+y+12\right)}\)

\(\Rightarrow\left(x+y\right)^2\le2\left(x+y+12\right)\)

\(\Rightarrow\left(x+y+4\right)\left(x+y-6\right)\le0\)

\(\Rightarrow x+y\le6\) (do \(x+y+4>0\))

\(P_{max}=6\) khi \(x=y=3\)

\(x+y=\sqrt{x+6}+\sqrt{y+6}\)

\(\Rightarrow\left(x+y\right)^2=x+y+12+2\sqrt{\left(x+6\right)\left(y+6\right)}\ge x+y+12\)

\(\Rightarrow\left(x+y\right)^2-\left(x+y\right)-12\ge0\)

\(\Rightarrow\left(x+y+3\right)\left(x+y-4\right)\ge0\)

\(\Rightarrow x+y-4\ge0\) (do \(x+y+3>0\))

\(\Rightarrow x+y\ge4\)

\(P_{min}=4\) khi \(\left(x;y\right)=\left(-6;10\right)\) và hoán vị

Trương Huy Hoàng
30 tháng 3 2021 lúc 21:40

Ta có: x - \(\sqrt{x+6}\) = \(\sqrt{y+6}\) - y (x; y \(\ge\) -6)

\(\Leftrightarrow\) P = x + y  = \(\sqrt{x+6}+\sqrt{y+6}\)

\(\Leftrightarrow\) P2 = x + y + 12 + 2\(\sqrt{\left(x+6\right)\left(y+6\right)}\)

Áp dụng BĐT Cô-si cho 2 số ko âm x + 6 và y + 6 ta có:

\(x+y+12\ge2\sqrt{\left(x+6\right)\left(y+6\right)}\)

\(\Leftrightarrow\) P2 \(\le\) x + y + 12 + x + y + 12 = 2x + 2y + 24 = 2P + 24

\(\Leftrightarrow\) P2 - 2P - 24 \(\le\) 0

\(\Leftrightarrow\) P2 - 36 + 12 - 2P \(\le\) 0

\(\Leftrightarrow\) (P - 6)(P + 6) + 2(6 - P) \(\le\) 0

\(\Leftrightarrow\) (P - 6)(P + 4) \(\le\) 0

\(\Leftrightarrow\) \(\left[{}\begin{matrix}\left\{{}\begin{matrix}P-6\ge0\\P+4\le0\end{matrix}\right.\\\left\{{}\begin{matrix}P-6\le0\\P+4\ge0\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left[{}\begin{matrix}-4\ge P\ge6\left(KTM\right)\\6\ge P\ge-4\left(TM\right)\end{matrix}\right.\)

\(\Rightarrow\) -4 \(\le\) P \(\le\) 6

Vậy ...

Chúc bn học tốt!

adfghjkl
Xem chi tiết
Phan Nghĩa
19 tháng 10 2017 lúc 19:21

\(x,y\ge-6\)

\(\Rightarrow x+y\ge0\Leftrightarrow x+y^2=\sqrt{x+6}+\sqrt{y+6}^2\le x+y+12.2\)

\(\Rightarrow x+y^2-2.x+y-24\le0\Rightarrow x+y\le6\)

\(\Rightarrow Max_P=6\Leftrightarrow x=y=3\)

P/s: Tôi ko chắt lắm đâu. Sai đâu thì bn sửa hộ nhé

tth_new
24 tháng 2 2019 lúc 8:07

Tham khảo: Câu hỏi của le thi thanh tra - Toán lớp 9 - Học toán với OnlineMath

Nguyễn Minh Hoàng
Xem chi tiết
Nguyễn Việt Lâm
5 tháng 8 2021 lúc 14:01

\(P=\sqrt{y}\left(\sqrt{x}+2\sqrt{z}\right)+3\sqrt{zx}=\left(6-\sqrt{x}-\sqrt{z}\right)\left(\sqrt{x}+2\sqrt{z}\right)+3\sqrt{zx}\)

\(P=-x+6\sqrt{x}-2z+12z=-\left(\sqrt{x}-3\right)^2-2\left(\sqrt{z}-3\right)^2+27\le27\)

\(P_{max}=27\) khi \(\left(x;y;z\right)=\left(9;0;9\right)\)

♡Trần Lệ Băng♡
Xem chi tiết
Big City Boy
Xem chi tiết
Akai Haruma
9 tháng 10 2021 lúc 8:24

Lời giải:

ĐKĐB $\Leftrightarrow x+y=\sqrt{x+6}+\sqrt{y+6}$

$\Rightarrow (x+y)^2=(\sqrt{x+6}+\sqrt{y+6})^2\leq (x+6+y+6)(1+1)$ (theo BĐT Bunhiacopxky)

$\Leftrightarrow (x+y)^2\leq 2(x+y+12)$

$\Leftrightarrow (x+y)^2-2(x+y)-24\leq 0$

$\Leftrightarrow (x+y+4)(x+y-6)\leq 0$

$\Leftrightarrow -4\leq x+y\leq 6$

Vậy $A_{\max}=6$

 

Đặng Việt Hùng
Xem chi tiết
tu congvien
1 tháng 4 2022 lúc 17:33

giải bằng Bunhiaskopki nha bạn, search gg

Xyz OLM
1 tháng 4 2022 lúc 17:34

Ta có P \(\le\dfrac{1^2+\left(\sqrt{x-1}\right)^2}{2}+\dfrac{2^2+\left(\sqrt{y-4}\right)^2}{2}+\dfrac{3^2+\left(\sqrt{z-9}\right)^2}{2}\)

\(=\dfrac{1+x-1+4+y-4+9+z-9}{2}=\dfrac{x+y+z}{2}=\dfrac{28}{2}=14\)

Dấu "=" xảy ra <=> \(\left\{{}\begin{matrix}1=\sqrt{x-1}\\2=\sqrt{y-4}\\3=\sqrt{z-9}\end{matrix}\right.\Leftrightarrow x=2;y=8;z=18\)(tm) 

Big City Boy
Xem chi tiết
Big City Boy
Xem chi tiết
nguyễn thùy linh
Xem chi tiết
Phước Nguyễn
17 tháng 3 2017 lúc 22:31

Bài này ko khó. Bạn nên tự làm!

alibaba nguyễn
18 tháng 3 2017 lúc 3:53

Ta có điều kiện \(\hept{\begin{cases}y\ge-6\\x\ge-6\\x+y\ge0\end{cases}}\)

Theo đề bài thì: \(x+y=\sqrt{x+6}+\sqrt{y+6}\)

\(\Leftrightarrow\left(x+y\right)^2=\left(\sqrt{x+6}+\sqrt{y+6}\right)^2\)

\(\Leftrightarrow P^2\le\left(1^2+1^2\right)\left(x+y+12\right)\)

 \(\Leftrightarrow P^2-2P-24\ge0\)

\(\Leftrightarrow-4\le P\le6\)

\(\Leftrightarrow-4< P\le6\left(1\right)\)

Ta lại có: 

\(\Leftrightarrow\left(x+y\right)^2=\left(\sqrt{x+6}+\sqrt{y+6}\right)^2\)

\(\Leftrightarrow P^2=x+y+12+2\sqrt{\left(x+6\right)\left(y+6\right)}\)

\(\Leftrightarrow P^2-P-12=2\sqrt{\left(x+6\right)\left(y+6\right)}\ge0\)

\(\Leftrightarrow\left(P+3\right)\left(P-4\right)\ge0\)

\(\Leftrightarrow\orbr{\begin{cases}P\le-3\left(l\right)\\P\ge4\left(2\right)\end{cases}}\)

Từ (1) và (2) \(\Rightarrow4\le P\le6\)

Vậy GTNN là \(P=4\)đạt được khi \(\hept{\begin{cases}x=-6\\y=10\end{cases}}or\hept{\begin{cases}x=10\\y=-6\end{cases}}\)

GTLN là \(P=6\) đạt được khi \(x=y=3\)  

alibaba nguyễn
18 tháng 3 2017 lúc 3:55

Nhầm dấu 1 chỗ. Sửa lại nhé

Ta có điều kiện \(\hept{\begin{cases}y\ge-6\\x\ge-6\\x+y\ge0\end{cases}}\)

Theo đề bài thì: \(x+y=\sqrt{x+6}+\sqrt{y+6}\)

\(\Leftrightarrow\left(x+y\right)^2=\left(\sqrt{x+6}+\sqrt{y+6}\right)^2\)

\(\Leftrightarrow P^2\le\left(1^2+1^2\right)\left(x+y+12\right)\)

 \(\Leftrightarrow P^2-2P-24\le0\)

\(\Leftrightarrow-4\le P\le6\)

\(\Leftrightarrow-4< P\le6\left(1\right)\)

Ta lại có: 

\(\Leftrightarrow\left(x+y\right)^2=\left(\sqrt{x+6}+\sqrt{y+6}\right)^2\)

\(\Leftrightarrow P^2=x+y+12+2\sqrt{\left(x+6\right)\left(y+6\right)}\)

\(\Leftrightarrow P^2-P-12=2\sqrt{\left(x+6\right)\left(y+6\right)}\ge0\)

\(\Leftrightarrow\left(P+3\right)\left(P-4\right)\ge0\)

\(\Leftrightarrow\orbr{\begin{cases}P\le-3\left(l\right)\\P\ge4\left(2\right)\end{cases}}\)

Từ (1) và (2) \(\Rightarrow4\le P\le6\)

Vậy GTNN là \(P=4\)đạt được khi \(\hept{\begin{cases}x=-6\\y=10\end{cases}}or\hept{\begin{cases}x=10\\y=-6\end{cases}}\)

GTLN là \(P=6\) đạt được khi \(x=y=3\)  

Kimian Hajan Ruventaren
Xem chi tiết
Hồng Phúc
16 tháng 1 2021 lúc 21:52

Từ giả thiết ta có:

\(x+y=3\left(\sqrt{x+1}+\sqrt{y+2}\right)\le3\sqrt{2\left(x+y+3\right)}\)

\(\Leftrightarrow P\le3\sqrt{2\left(P+3\right)}\)

\(\Leftrightarrow\left\{{}\begin{matrix}P\ge0\\18P+54\ge P^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}P\ge0\\P^2-18P-54\le0\end{matrix}\right.\)

\(\Leftrightarrow0\le P\le9+3\sqrt{15}\)

\(\Rightarrow maxP=9+3\sqrt{15}\Leftrightarrow\left(x;y\right)=\left(\dfrac{10+3\sqrt{15}}{2};\dfrac{8+3\sqrt{15}}{2}\right)\)