cho M=\(\dfrac{\sqrt{x-1}}{2}\).Tìm x thuộc Z và x<50 để cho M có giá trị nguyên
Bài 4:
Cho biểu thức \(M=\dfrac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\dfrac{\sqrt{x}+3}{\sqrt{x}-2}-\dfrac{2\sqrt{x}+1}{3-\sqrt{x}}\)
a) Tìm đkxđ của M và rút gọn
b) Tìm x thuộc Z để M thuộc Z
Em cần gấp :<
a) ĐKXĐ: \(x\ge0;x\ne9;x\ne4\)
\(M=\dfrac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\dfrac{\sqrt{x}+3}{\sqrt{x}-2}-\dfrac{2\sqrt{x}+1}{3-\sqrt{x}}\)
\(M=\dfrac{2\sqrt{x}-9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-\dfrac{\sqrt{x}+3}{\sqrt{x}-2}+\dfrac{2\sqrt{x}+1}{\sqrt{x}-3}\)
\(M=\dfrac{2\sqrt{x}-9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-\dfrac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}+\dfrac{\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
\(M=\dfrac{2\sqrt{x}-9-x+9+2x-4\sqrt{x}+\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
\(M=\dfrac{x-\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
\(M=\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
\(M=\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\)
b) Ta có M ϵ Z thì \(\dfrac{\sqrt{x}+1}{\sqrt{x}-3}=\dfrac{\sqrt{x}-3+4}{\sqrt{x}-3}=\dfrac{\sqrt{x}-3}{\sqrt{x}-3}+\dfrac{4}{\sqrt{x}-3}=1+\dfrac{4}{\sqrt{x}-3}\)
Phải thuộc Z vậy:
4 ⋮ \(\sqrt{x}-3\)
\(\Rightarrow\sqrt{x}-3\inƯ\left(4\right)=\left\{1;-1;2;-2;4;-4\right\}\)
Mà: \(x\ge0,x\ne4,x\ne9\) nên \(\sqrt{x}-3\in\left\{1;2;-2;4\right\}\)
\(\Rightarrow x\in\left\{16;25;1;49\right\}\)
cho C=\(\dfrac{\sqrt{x}}{x+\sqrt{x}+1}\) chứng minh C nhỏ hơn \(\dfrac{1}{3}\)
cho D= \(\dfrac{\sqrt{x}-1}{\sqrt{x}+2}\) tìm x thuộc Z để \(\dfrac{1}{D}\) thuộc Z
cho E = \(\dfrac{\sqrt{x}+1}{\sqrt{x}-4}\) tìm x thuộc Z để E thuộc Z
cho A =(\(\dfrac{2}{\sqrt{x}+3}\) -\(\dfrac{1}{\sqrt{x}}\)) : \(\dfrac{\sqrt{x}-2}{x+3\sqrt{x}}\)
a , rút gọn A
b. tìm x để A=3
c, đặt B=A.\(\dfrac{\sqrt{x}+3}{\sqrt{x}+2}\) tìm x thuộc Z để B thuộc Z
1) +) ta có : \(C-\dfrac{1}{3}\Leftrightarrow\dfrac{\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{1}{3}=\dfrac{3\sqrt{x}-x+\sqrt{x}-1}{3\left(x+\sqrt{x}+1\right)}\)
\(=\dfrac{-\left(x-4\sqrt{x}+4\right)+3}{3\left(x+\sqrt{x}+1\right)}=\dfrac{-\left(\sqrt{x}-2\right)^2+3}{3\left(x+\sqrt{x}+1\right)}\)
không thể cm được đâu bn --> xem lại đề
2) +) ta có : \(D=\dfrac{\sqrt{x}-1}{\sqrt{x}+2}=1-\dfrac{3}{\sqrt{x}+2}\)
--> để \(D\in Z\Leftrightarrow\sqrt{x}+2\) là ước của 3 \(\Leftrightarrow\sqrt{x}+2\in\left\{\pm1;\pm3\right\}\)
\(\Leftrightarrow x=1\) vậy \(x=1\)
3) +) tương tự 2)
4) a) +) điều kiện xác định : \(x>0;x\ne4\)
ta có : \(A=\left(\dfrac{2}{\sqrt{x}+3}-\dfrac{1}{\sqrt{x}}\right):\dfrac{\sqrt{x}-2}{x+3\sqrt{x}}\)
\(\Leftrightarrow A=\left(\dfrac{2\sqrt{x}-\sqrt{x}-3}{\sqrt{x}\left(\sqrt{x}+3\right)}\right):\dfrac{x+3\sqrt{x}}{\sqrt{x}-2}=\dfrac{\sqrt{x}-3}{\sqrt{x}-2}\)
b) ta có : \(A=3\Leftrightarrow\dfrac{\sqrt{x}-3}{\sqrt{x}-2}=3\Leftrightarrow\sqrt{x}-3=3\sqrt{x}-6\)
\(\Leftrightarrow2\sqrt{x}=3\Leftrightarrow\sqrt{x}=\dfrac{3}{2}\Leftrightarrow x=\dfrac{9}{4}\) vậy \(x=\dfrac{9}{4}\)
c) ta có : \(B=A.\dfrac{\sqrt{x}+3}{\sqrt{x}+2}=\dfrac{\sqrt{x}-3}{\sqrt{x}-2}.\dfrac{\sqrt{x}+3}{\sqrt{x}+2}=\dfrac{x-9}{x-4}=1-\dfrac{5}{x-4}\)
tương tự 2 )
\(\)
Bài 4:
Cho biểu thức: \(M=\dfrac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\dfrac{\sqrt{x}+3}{\sqrt{x}-2}+\dfrac{2\sqrt{x}+1}{3-\sqrt{x}}\)
a) Tìm đkxđ của M và rút gọn
b) Tìm x \(\in Z\) để M \(\in Z\)
\(M=\dfrac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\dfrac{\sqrt{x}+3}{\sqrt{x}-2}+\dfrac{2\sqrt{x}+1}{3-\sqrt{x}}\left(\text{đ}k\text{x}\text{đ}:x\ge3\right)\\ =\dfrac{2\sqrt{x}-9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-\dfrac{\sqrt{x}+3}{\sqrt{x}-2}-\dfrac{2\sqrt{x}+1}{\sqrt{x}-3}\\ =\dfrac{2\sqrt{x}-9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-\dfrac{x-9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-\dfrac{\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\\ =\dfrac{2\sqrt{x}-9-\left(x-9\right)-\left(2x-4\sqrt{x}+\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{2\sqrt{x}-9-x+9-2x+4\sqrt{x}-\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\\ =\dfrac{5\sqrt{x}-3x+2}{x-5\sqrt{x}+6}\)
__
Để \(M\in Z\) thì \(x-5\sqrt{x}+6\) thuộc ước của \(5\sqrt{x}-3x+2\)
\(\Rightarrow x-5\sqrt{x}+6=-5\sqrt{x}-3x+2\\ \Leftrightarrow x-5\sqrt{x}+6+5\sqrt{x}+3x-2=0\\ \Leftrightarrow4x-4=0\\ \Leftrightarrow4x=4\\ \Leftrightarrow x=1\)
B1:
A= \(\dfrac{\sqrt{x}}{\sqrt{x}+3}+\dfrac{2\sqrt{x}}{\sqrt{x}-3}-\dfrac{3x+9}{x-9}\)
a) Rút gọn và tìm ĐKXĐ của A
b) Tính g/trị của A khi x = 16
c) Tim g/trị của x để A = 1/3
d) C/m A>0 với X thuộc TXĐ
e) Tìm x thuộc Z để 2.A thuộc Z
f) Tìm GTLN của A
a: ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne9\end{matrix}\right.\)
Ta có: \(A=\dfrac{\sqrt{x}}{\sqrt{x}+3}+\dfrac{2\sqrt{x}}{\sqrt{x}-3}-\dfrac{3x+9}{x-9}\)
\(=\dfrac{x-3\sqrt{x}+2x+6\sqrt{x}-3x-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{3\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(=\dfrac{3}{\sqrt{x}+3}\)
b: Thay x=16 vào A, ta được:
\(A=\dfrac{3}{4+3}=\dfrac{3}{7}\)
c)\(A=\dfrac{3}{\sqrt{x}+3}=\dfrac{1}{3}\)
\(\Rightarrow\sqrt{x}+3=9\\ \Rightarrow\sqrt{x}=6\\ \Rightarrow x=36\)
d) \(A=\dfrac{3}{\sqrt{x}+3}\)
Vì \(3>0;\sqrt{x}+3>0\Rightarrow\dfrac{3}{\sqrt{x}+3}>0\)
e) \(2A\in Z\Rightarrow\dfrac{6}{\sqrt{x}+3}\in Z \Rightarrow6⋮x+3\\\Rightarrow\sqrt{x}+3\inƯ\left(6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\Rightarrow x=\left\{0;9\right\}\)
Cho hai bt A=\(\dfrac{\sqrt{x}+2}{\sqrt{x}-2}\)và B=\(\left(\dfrac{\sqrt{x}}{x-4}+\dfrac{1}{\sqrt{x}-2}\right):\dfrac{\sqrt{x}+2}{x-4}\)
a) rút gọn B
b)tìm x thuộc Z để C= A(B-2) có giá trị nguyên
a) \(B=\left(\dfrac{\sqrt{x}}{x-4}+\dfrac{1}{\sqrt{x}-2}\right):\dfrac{\sqrt{x}+2}{x-4}\left(đk:x\ge0,x\ne4\right)\)
\(=\dfrac{\sqrt{x}+\sqrt{x}+2}{x-4}.\dfrac{x-4}{\sqrt{x}+2}=\dfrac{2\sqrt{x}+2}{\sqrt{x}+2}\)
c) \(C=A\left(B-2\right)=\dfrac{\sqrt{x}+2}{\sqrt{x}-2}\left(\dfrac{2\sqrt{x}+2}{\sqrt{x}+2}-2\right)\)
\(=\dfrac{\sqrt{x}+2}{\sqrt{x}-2}.\dfrac{-2}{\sqrt{x}+2}=\dfrac{-2}{\sqrt{x}-2}\in Z\)
\(\Rightarrow\sqrt{x}-2\inƯ\left(2\right)=\left\{1;-1;2-2\right\}\)
\(\Rightarrow\sqrt{x}\in\left\{3;1;4;0\right\}\)
\(\Rightarrow x\in\left\{0;1;9;16\right\}\)
Rút gọn \(P=\left(\dfrac{x-3\sqrt{x}}{x-9}-1\right):\left(\dfrac{9-x}{x+\sqrt{x}-6}-\dfrac{\sqrt{x}-3}{2-\sqrt{x}}-\dfrac{\sqrt{x}-2}{\sqrt{x}+3}\right)\)rồi tìm x thuộc Z để P thuộc Z.
ĐKXĐ: x>=0; \(x\notin\left\{9;4\right\}\)\(P=\left(\dfrac{x-3\sqrt{x}}{x-9}-1\right):\left(\dfrac{9-x}{x+\sqrt{x}-6}-\dfrac{\sqrt{x}-3}{2-\sqrt{x}}-\dfrac{\sqrt{x}-2}{\sqrt{x}+3}\right)\)
\(=\left(\dfrac{\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}-1\right):\left(\dfrac{9-x}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}+\dfrac{\sqrt{x}-3}{\sqrt{x}-2}-\dfrac{\sqrt{x}-2}{\sqrt{x}+3}\right)\)
\(=\left(\dfrac{\sqrt{x}}{\sqrt{x}+3}-1\right):\left(\dfrac{3-\sqrt{x}}{\sqrt{x}-2}+\dfrac{\sqrt{x}-3}{\sqrt{x}-2}-\dfrac{\sqrt{x}-2}{\sqrt{x}+3}\right)\)
\(=\dfrac{\sqrt{x}-\sqrt{x}-3}{\sqrt{x}+3}:\dfrac{-\left(\sqrt{x}-2\right)}{\sqrt{x}+3}\)
\(=\dfrac{3}{\sqrt{x}-2}\)
Để P là số nguyên thì \(3⋮\sqrt{x}-2\)
=>\(\sqrt{x}-2\in\left\{1;-1;3;-3\right\}\)
=>\(\sqrt{x}\in\left\{3;1;5;-1\right\}\)
=>\(\sqrt{x}\in\left\{3;1;5\right\}\)
=>\(x\in\left\{9;1;25\right\}\)
Kết hợp ĐKXĐ, ta được; \(x\in\left\{1;25\right\}\)
Lời giải:
ĐKXĐ: $x\geq 0; x\neq 9; x\neq 4$
\(P=\frac{-3\sqrt{x}+9}{x-9}: \left[\frac{9-x}{(\sqrt{x}-2)(\sqrt{x}+3)}+\frac{(\sqrt{x}-3)(\sqrt{x}+3)}{(\sqrt{x}-2)(\sqrt{x}+3)}-\frac{(\sqrt{x}-2)^2}{(\sqrt{x}-2)(\sqrt{x}+3)}\right]\)
\(=\frac{-3(\sqrt{x}-3)}{(\sqrt{x}-3)(\sqrt{x}+3)}:\frac{9-x+x-9-(\sqrt{x}-2)^2}{(\sqrt{x}-2)(\sqrt{x}+3)}\)
\(=\frac{-3}{\sqrt{x}+3}:\frac{-(\sqrt{x}-2)^2}{(\sqrt{x}-2)(\sqrt{x}+3)}=\frac{-3}{\sqrt{x}+3}:\frac{-(\sqrt{x}-2)}{\sqrt{x}+3}\\ =\frac{-3}{\sqrt{x}+3}.\frac{\sqrt{x}+3}{-(\sqrt{x}-2)}=\frac{3}{\sqrt{x}-2}\)
Với $x\in\mathbb{Z}$, để $P$ nguyên thì $\sqrt{x}-2$ là ước nguyên của 3
$\Rightarrow \sqrt{x}-2\in \left\{1; -1; 3; -3\right\}$
$\Rightarrow \sqrt{x}\in \left\{3; 1; 5; -1\right\}$
$\Rightarrow x\in \left\{9; 1; 25\right\}$
Theo ĐKXĐ suy ra $x=1$ hoặc $x=25$
Bài 3:
P = \(\dfrac{\sqrt{x}}{\sqrt{x}-1}+\dfrac{3}{\sqrt{x}+1}-\dfrac{6\sqrt{x}-4}{x-1}\)
a) Rút gọn P ( đkxđ)
b) Tính P khi x = 1/4
c) Tìm x để P < 1/2
d) Tìm x biết P = 2/3
e) Tìm X thuộc Z để P thuộc Z
a: Ta có: \(P=\dfrac{\sqrt{x}}{\sqrt{x}-1}+\dfrac{3}{\sqrt{x}+1}-\dfrac{6\sqrt{x}-4}{x-1}\)
\(=\dfrac{x+\sqrt{x}+3\sqrt{x}-3-6\sqrt{x}+4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{x-2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\)
b: Thay \(x=\dfrac{1}{4}\) vào P, ta được:
\(P=\left(\dfrac{1}{2}-1\right):\left(\dfrac{1}{2}+1\right)=\dfrac{-1}{2}:\dfrac{3}{2}=-\dfrac{1}{3}\)
c: Ta có: \(P< \dfrac{1}{2}\)
\(\Leftrightarrow P-\dfrac{1}{2}< 0\)
\(\Leftrightarrow\dfrac{\sqrt{x}-1}{\sqrt{x}+1}-\dfrac{1}{2}< 0\)
\(\Leftrightarrow\dfrac{2\sqrt{x}-2-\sqrt{x}-1}{2\left(\sqrt{x}+1\right)}< 0\)
\(\Leftrightarrow\sqrt{x}< 3\)
hay x<9
Kết hợp ĐKXĐ, ta được: \(\left\{{}\begin{matrix}0\le x< 9\\x\ne1\end{matrix}\right.\)
A=\(\dfrac{x}{x-4}+\dfrac{1}{\sqrt{x}-2}+\dfrac{1}{\sqrt{x}+2}\)
a) Rút gọn A ( tìm đkxđ )
b)Tìm A khi x = 36
c)Tìm x để A= -1/3
d) Tìm x để A>0
e)Tìm x thuộc Z để A thuộc Z
ĐKXĐ: \(x\ge0;x\ne4\)
\(A=\dfrac{x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\dfrac{\sqrt{x}+2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}+\dfrac{\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(=\dfrac{x+2\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{\sqrt{x}}{\sqrt{x}-2}\)
b. \(x=36\Rightarrow A=\dfrac{\sqrt{36}}{\sqrt{36}-2}=\dfrac{6}{6-2}=\dfrac{3}{2}\)
c. \(A=-\dfrac{1}{3}\Rightarrow\dfrac{\sqrt{x}}{\sqrt{x}-2}=-\dfrac{1}{3}\Rightarrow3\sqrt{x}=2-\sqrt{x}\)
\(\Rightarrow4\sqrt{x}=2\Rightarrow\sqrt{x}=\dfrac{1}{2}\Rightarrow x=\dfrac{1}{4}\)
d. \(A>0\Rightarrow\dfrac{\sqrt{x}}{\sqrt{x}-2}>0\Rightarrow\sqrt{x}-2>0\Rightarrow x>4\)
e. \(A=\dfrac{\sqrt{x}-2+2}{\sqrt{x}-2}=1+\dfrac{2}{\sqrt{x}-2}\in Z\Rightarrow\sqrt{x}-2=Ư\left(2\right)\)
\(\Rightarrow\sqrt{x}-2=\left\{-2;-1;1;2\right\}\)
\(\Rightarrow\sqrt{x}=\left\{0;1;3;4\right\}\Rightarrow x=\left\{0;1;9;16\right\}\)
a: Ta có: \(A=\dfrac{x}{x-4}+\dfrac{1}{\sqrt{x}-2}+\dfrac{1}{\sqrt{x}+2}\)
\(=\dfrac{x+\sqrt{x}+2+\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(=\dfrac{\sqrt{x}}{\sqrt{x}-2}\)
b: Thay x=36 vào A, ta được:
\(A=\dfrac{6}{6-2}=\dfrac{6}{4}=\dfrac{3}{2}\)
c: Để \(A=-\dfrac{1}{3}\) thì \(3\sqrt{x}=-\sqrt{x}+2\)
\(\Leftrightarrow4\sqrt{x}=2\)
hay \(x=\dfrac{1}{4}\)
d: Để A>0 thì \(\sqrt{x}-2>0\)
hay x>4
e: Để A nguyên thì \(\sqrt{x}⋮\sqrt{x}-2\)
\(\Leftrightarrow\sqrt{x}-2\in\left\{-1;1;2;-2\right\}\)
\(\Leftrightarrow\sqrt{x}\in\left\{1;3;4;0\right\}\)
hay \(x\in\left\{1;9;16;0\right\}\)
a/ Cho M=\(\dfrac{\sqrt{x}-1}{2}\). Tìm x ∈ Z để M ∈ Z biết x<50
b/ Cho N=\(\dfrac{9}{\sqrt{x}-5}\). Tìm x ∈ Z để N ∈ Z
\(a,x< 50\Leftrightarrow\sqrt{x}-1< 5\sqrt{2}-1\\ M=\dfrac{\sqrt{x}-1}{2}\in Z\\ \Leftrightarrow\sqrt{x}-1\in B\left(2\right)=\left\{0;2;4;6\right\}\\ \Leftrightarrow\sqrt{x}\in\left\{1;3;5;7\right\}\\ \Leftrightarrow x\in\left\{1;9;25;49\right\}\\ b,\Leftrightarrow\sqrt{x}-5\inƯ\left(9\right)=\left\{-3;-1;1;3;9\right\}\left(\sqrt{x}-5>-5\right)\\ \Leftrightarrow\sqrt{x}\in\left\{2;4;6;8;14\right\}\\ \Leftrightarrow x\in\left\{4;16;36;64;196\right\}\)
Cho biểu thức :
\(B=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}-\dfrac{\sqrt{x}+3}{\sqrt{x}-2}-\dfrac{x+5}{x-\sqrt{x}-2}\)
a) Rút gọn B ?
b) Tìm x để B > -1 ?
c) Tìm x thuộc Z để B thuộc Z ?
ĐKXĐ \(x\ge0,x\ne4\)
a) \(B=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)-\left(\sqrt{x}+3\right)\cdot\left(\sqrt{x}+1\right)-\left(x+5\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{x-2\sqrt{x}-\sqrt{x}+2-\left(x+\sqrt{x}+3\sqrt{x}+3\right)-x-5}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{-x-7\sqrt{x}-6}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}=\dfrac{-\left(\sqrt{x}+1\right)\cdot\left(\sqrt{x}+6\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{\sqrt{x}+6}{2-\sqrt{x}}\)
b) B > -1 <=> B + 1 > 0.
\(\Leftrightarrow\dfrac{\sqrt{x}+6}{2-\sqrt{x}}+1>0\Leftrightarrow\dfrac{8}{2-\sqrt{x}}>0\)
=> \(2-\sqrt{x}>0\Leftrightarrow\sqrt{x}< 2\Rightarrow x< 4\)
Vậy \(0\le x< 4\) thì B > -1.
c) \(B=\dfrac{\sqrt{x}+6}{2-\sqrt{x}}=-1-\dfrac{8}{2-\sqrt{x}}\in Z\)
\(\Rightarrow2-\sqrt{x}\inƯ_{\left(8\right)}=\left\{\pm1;\pm2;\pm4;\pm8\right\}\)
\(\Rightarrow\sqrt{x}\in\left\{1;3;0;4;-2;6;-6;10\right\}\)
\(\Rightarrow x\in\left\{1;9;0;16;36;100\right\}\)thì \(B\in Z\)
a) đk : \(x\ne4;x\ge0\)
B = \(\dfrac{\sqrt{x}-1}{\sqrt{x}+1}-\dfrac{\sqrt{x}+3}{\sqrt{x}-2}-\dfrac{x+5}{x-\sqrt{x}-2}\)
B = \(\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)-\left(\sqrt{x}+3\right)\left(\sqrt{x}+1\right)-\left(x+5\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\)
B = \(\dfrac{x-2\sqrt{x}-\sqrt{x}+2-\left(x+\sqrt{x}+3\sqrt{x}+3\right)-x-5}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\)
B = \(\dfrac{x-2\sqrt{x}-\sqrt{x}+2-x-\sqrt{x}-3\sqrt{x}-3-x-5}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\)
B = \(\dfrac{-x-7\sqrt{x}-6}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\) = \(\dfrac{\left(-\sqrt{x}-6\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\)
B = \(\dfrac{-\sqrt{x}-6}{\sqrt{x}-2}\)
a) B = \(\dfrac{\sqrt{x}-1}{\sqrt{x}+1}-\dfrac{\sqrt{x}+3}{\sqrt{x}-2}-\dfrac{x+5}{x-\sqrt{x}+2}\) ( đk: x \(\ge\) 0; x\(\ne\)4)
<=> B = \(\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)-\left(\sqrt{x}+3\right)\left(\sqrt{x}+1\right)-x-5}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\)
<=> B = \(\dfrac{x-3\sqrt{x}+2-x-4\sqrt{x}-3-x-5}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\)
<=> B = \(\dfrac{x+7\sqrt{x}+6}{-\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}=\dfrac{-\left(\sqrt{x}+1\right)\left(\sqrt{x}+6\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\)
=> B = \(\dfrac{-\sqrt{x}-6}{\sqrt{x}-2}\)
b) Để B > -1 => \(\dfrac{-\sqrt{x}-6}{\sqrt{x}-2}>-1\)
=> \(\dfrac{-\sqrt{x}-6}{\sqrt{x}-2}+1>0\)
<=> \(\dfrac{-8}{\sqrt{x}-2}\) > 0 => \(\sqrt{x}-2< 0\) => \(x< 4\)
Đối chiếu với điều kiện ta được: \(0\le x< 4\)
c) Để B \(\in\) Z => \(\dfrac{-\sqrt{x}-6}{\sqrt{x}-2}\) \(\in\) Z
Mà \(\dfrac{-\sqrt{x}-6}{\sqrt{x}-2}\) = \(\dfrac{-\left(\sqrt{x}-2\right)-8}{\sqrt{x}-2}=-1-\dfrac{8}{\sqrt{x}-2}\)
=> \(\dfrac{8}{\sqrt{x}-2}\in Z\) => 8 \(⋮\) \(\sqrt{x}-2\)
=> \(\sqrt{x}\inƯ\left(8\right)=\left\{\pm1;\pm2;\pm4;\pm8\right\}\)
=> \(\sqrt{x}\in\left\{3;1;4;0;6;-4;10;-6\right\}\)
Mà \(x\ge0\) => \(x\in\left\{9;0;1;16;36;100\right\}\)
Vậy .......................................................