Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyên Hoàng

Rút gọn \(P=\left(\dfrac{x-3\sqrt{x}}{x-9}-1\right):\left(\dfrac{9-x}{x+\sqrt{x}-6}-\dfrac{\sqrt{x}-3}{2-\sqrt{x}}-\dfrac{\sqrt{x}-2}{\sqrt{x}+3}\right)\)rồi tìm x thuộc Z để P thuộc Z.

 

ĐKXĐ: x>=0; \(x\notin\left\{9;4\right\}\)\(P=\left(\dfrac{x-3\sqrt{x}}{x-9}-1\right):\left(\dfrac{9-x}{x+\sqrt{x}-6}-\dfrac{\sqrt{x}-3}{2-\sqrt{x}}-\dfrac{\sqrt{x}-2}{\sqrt{x}+3}\right)\)

\(=\left(\dfrac{\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}-1\right):\left(\dfrac{9-x}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}+\dfrac{\sqrt{x}-3}{\sqrt{x}-2}-\dfrac{\sqrt{x}-2}{\sqrt{x}+3}\right)\)

\(=\left(\dfrac{\sqrt{x}}{\sqrt{x}+3}-1\right):\left(\dfrac{3-\sqrt{x}}{\sqrt{x}-2}+\dfrac{\sqrt{x}-3}{\sqrt{x}-2}-\dfrac{\sqrt{x}-2}{\sqrt{x}+3}\right)\)

\(=\dfrac{\sqrt{x}-\sqrt{x}-3}{\sqrt{x}+3}:\dfrac{-\left(\sqrt{x}-2\right)}{\sqrt{x}+3}\)

\(=\dfrac{3}{\sqrt{x}-2}\)

Để P là số nguyên thì \(3⋮\sqrt{x}-2\)

=>\(\sqrt{x}-2\in\left\{1;-1;3;-3\right\}\)

=>\(\sqrt{x}\in\left\{3;1;5;-1\right\}\)

=>\(\sqrt{x}\in\left\{3;1;5\right\}\)

=>\(x\in\left\{9;1;25\right\}\)

Kết hợp ĐKXĐ, ta được; \(x\in\left\{1;25\right\}\)

Akai Haruma
29 tháng 1 lúc 22:19

Lời giải:
ĐKXĐ: $x\geq 0; x\neq 9; x\neq 4$

\(P=\frac{-3\sqrt{x}+9}{x-9}: \left[\frac{9-x}{(\sqrt{x}-2)(\sqrt{x}+3)}+\frac{(\sqrt{x}-3)(\sqrt{x}+3)}{(\sqrt{x}-2)(\sqrt{x}+3)}-\frac{(\sqrt{x}-2)^2}{(\sqrt{x}-2)(\sqrt{x}+3)}\right]\)

\(=\frac{-3(\sqrt{x}-3)}{(\sqrt{x}-3)(\sqrt{x}+3)}:\frac{9-x+x-9-(\sqrt{x}-2)^2}{(\sqrt{x}-2)(\sqrt{x}+3)}\)

\(=\frac{-3}{\sqrt{x}+3}:\frac{-(\sqrt{x}-2)^2}{(\sqrt{x}-2)(\sqrt{x}+3)}=\frac{-3}{\sqrt{x}+3}:\frac{-(\sqrt{x}-2)}{\sqrt{x}+3}\\ =\frac{-3}{\sqrt{x}+3}.\frac{\sqrt{x}+3}{-(\sqrt{x}-2)}=\frac{3}{\sqrt{x}-2}\)

Với $x\in\mathbb{Z}$, để $P$ nguyên thì $\sqrt{x}-2$ là ước nguyên của 3

$\Rightarrow \sqrt{x}-2\in \left\{1; -1; 3; -3\right\}$

$\Rightarrow \sqrt{x}\in \left\{3; 1; 5; -1\right\}$

$\Rightarrow x\in \left\{9; 1; 25\right\}$

Theo ĐKXĐ suy ra $x=1$ hoặc $x=25$


Các câu hỏi tương tự
ngoctamnguyen
Xem chi tiết
Hải Lục Vũ
Xem chi tiết
Lương Ngọc Anh
Xem chi tiết
Diệu Anh
Xem chi tiết
123 nhan
Xem chi tiết
Yết Thiên
Xem chi tiết
Trần Minh Thư
Xem chi tiết
Lương Ngọc Anh
Xem chi tiết
Ánh Trương
Xem chi tiết