Những câu hỏi liên quan
2K9-(✎﹏ ΔΠGΣLS ΩҒ DΣΔTH...
Xem chi tiết
Nguyễn Việt Lâm
27 tháng 12 2022 lúc 19:48

1.

Áp dụng BĐT Cauchy-Schwarz:

\(\dfrac{a}{2a+a+b+c}=\dfrac{a}{25}.\dfrac{\left(2+3\right)^2}{2a+a+b+c}\le\dfrac{a}{25}\left(\dfrac{2^2}{2a}+\dfrac{3^2}{a+b+c}\right)=\dfrac{2}{25}+\dfrac{9}{25}.\dfrac{a}{a+b+c}\)

Tương tự:

\(\dfrac{b}{3b+a+c}\le\dfrac{2}{25}+\dfrac{9}{25}.\dfrac{b}{a+b+c}\)

\(\dfrac{c}{a+b+3c}\le\dfrac{2}{25}+\dfrac{9}{25}.\dfrac{c}{a+b+c}\)

Cộng vế:

\(VT\le\dfrac{6}{25}+\dfrac{9}{25}.\dfrac{a+b+c}{a+b+c}=\dfrac{3}{5}\)

Dấu "=" xảy ra khi \(a=b=c\)

Bình luận (0)
Nguyễn Việt Lâm
27 tháng 12 2022 lúc 19:52

2.

Đặt \(\dfrac{x}{x-1}=a;\dfrac{y}{y-1}=b;\dfrac{z}{z-1}=c\)

Ta có: \(\dfrac{x}{x-1}=a\Rightarrow x=ax-a\Rightarrow a=x\left(a-1\right)\Rightarrow x=\dfrac{a}{a-1}\)

Tương tự ta có: \(y=\dfrac{b}{b-1}\) ; \(z=\dfrac{c}{c-1}\)

Biến đổi giả thiết:

\(xyz=1\Rightarrow\dfrac{abc}{\left(a-1\right)\left(b-1\right)\left(c-1\right)}=1\)

\(\Rightarrow abc=\left(a-1\right)\left(b-1\right)\left(c-1\right)\)

\(\Rightarrow ab+bc+ca=a+b+c-1\)

BĐT cần chứng minh trở thành:

\(a^2+b^2+c^2\ge1\)

\(\Leftrightarrow\left(a+b+c\right)^2-2\left(ab+bc+ca\right)\ge1\)

\(\Leftrightarrow\left(a+b+c\right)^2-2\left(a+b+c-1\right)\ge1\)

\(\Leftrightarrow\left(a+b+c-1\right)^2\ge0\) (luôn đúng)

Bình luận (0)
Lê Hào 7A4
Xem chi tiết
Gô đầu moi
28 tháng 12 2021 lúc 16:23

Bạn à tôi chịu

 

Bình luận (0)
Lê Hào 7A4
28 tháng 12 2021 lúc 16:28

hihithì nó khó thiệt mà

Bình luận (0)
Nguyễn Hoàng Minh
28 tháng 12 2021 lúc 20:57

Sửa: CMR: \(\left(\dfrac{2019b+2020c-2021d}{2019c+2020d-2021e}\right)^3=\dfrac{a^2}{bc}\)

\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{d}{e}=\dfrac{2019b+2020c-2021d}{2019c+2020d-2021e}\\ \Rightarrow\left(\dfrac{a}{b}\right)^3=\left(\dfrac{2019b+2020c-2021d}{2019c+2020d-2021e}\right)^3\left(1\right)\\ \dfrac{a}{b}=\dfrac{b}{c}=k\Rightarrow a=bk;b=ck\Rightarrow a=ck^2\\ \Rightarrow\dfrac{a^2}{bc}=\dfrac{c^2k^4}{ck\cdot c}=k^3=\left(\dfrac{a}{b}\right)^3\left(2\right)\\ \left(1\right)\left(2\right)\RightarrowĐpcm\)

Bình luận (0)
Trịnh Diệu Linh
Xem chi tiết
Akai Haruma
7 tháng 2 2020 lúc 18:31

Bài 1:

$\frac{a}{b}=\frac{c}{d}=t\Rightarrow a=bt; c=dt$. Khi đó:

\(\frac{2a^2-3ab+5b^2}{2a^2+3ab}=\frac{2(bt)^2-3.bt.b+5b^2}{2(bt)^2+3bt.b}=\frac{b^2(2t^2-3t+5)}{b^2(2t^2+3t)}\)

$=\frac{2t^2-3t+5}{2t^2+3t}(1)$
\(\frac{2c^2-3cd+5d^2}{2c^2+3cd}=\frac{2(dt)^2-3.dt.d+5d^2}{2(dt)^2+3dt.d}=\frac{d^2(2t^2-3t+5)}{d^2(2t^2+3t)}=\frac{2t^2-3t+5}{2t^2+3t}(2)\)

Từ $(1);(2)$ suy ra đpcm.

Bình luận (0)
 Khách vãng lai đã xóa
Akai Haruma
7 tháng 2 2020 lúc 18:38

Bài 2:

Từ $\frac{a}{c}=\frac{c}{b}\Rightarrow c^2=ab$. Khi đó:

$\frac{b^2-c^2}{a^2+c^2}=\frac{b^2-ab}{a^2+ab}=\frac{b(b-a)}{a(a+b)}$ (đpcm)

Bình luận (0)
 Khách vãng lai đã xóa
Akai Haruma
7 tháng 2 2020 lúc 18:40

Bài 3:

Đặt $\frac{a}{b}=\frac{c}{d}=t\Rightarrow a=bt; c=dt$

Khi đó:

$\frac{3a^6+c^6}{3b^6+d^6}=\frac{3(bt)^6+(dt)^6}{3b^6+d^6}=\frac{t^6(3b^6+d^6)}{3b^6+d^6}=t^6(*)$

Và:

$\frac{(a+c)^6}{(b+d)^6}=(\frac{bt+dt}{b+d})^6=t^6(**)$

Từ $(*); (**)\Rightarrow $ đpcm.

Bình luận (0)
 Khách vãng lai đã xóa
England
Xem chi tiết
Nguyễn Thùy Dương
31 tháng 10 2017 lúc 18:02

Bài 1:

Áp dụng t.c của dãy tỉ số bằng nhau, ta có:

\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{a+b+c}{b+c+d}\\ =\left(\dfrac{a+b+c}{b+c+d}\right)^3=\dfrac{a^3}{b^3}=\dfrac{a.b.c}{b.c.d}=\dfrac{a}{d}\left(dpcm\right)\)

Bình luận (1)
Xem chi tiết
Nguyễn Việt Lâm
12 tháng 12 2021 lúc 10:02

Đẳng thức đầu tiên sai:

Ví dụ: \(a=1;b=2;c=3;d=6\) thì \(\dfrac{a}{b}=\dfrac{c}{d}\)

Nhưng \(\dfrac{a.d}{c.d}\ne\dfrac{a^2-b^2}{b^2-d^2}\)

Với đẳng thức thứ 2:

\(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a+b}{c+d}\)

\(\Rightarrow\dfrac{a^2}{c^2}=\dfrac{b^2}{d^2}=\left(\dfrac{a+b}{c+d}\right)^2=\dfrac{a^2+b^2}{c^2+d^2}\)

Bình luận (1)
Thiên Yết
Xem chi tiết
tthnew
25 tháng 1 2021 lúc 17:54

a) Ta có:

\(a^2+b^2+c^2\ge ab+bc+ca\)

 \(\Leftrightarrow\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)

\(\Leftrightarrow\dfrac{\left(a+b+c\right)^2}{9}\ge\dfrac{\left(ab+bc+ca\right)}{3}\)

\(\Leftrightarrow\dfrac{a+b+c}{3}\ge\sqrt{\dfrac{ab+bc+ca}{3}}\)

Đẳng thức xảy ra khi $a=b=c.$

b) BĐT \(\Leftrightarrow3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\)

Hay là \(2\left(a^2+b^2+c^2-ab-bc-ca\right)\ge0\),

đúng.

Đẳng thức xảy ra khi $a=b=c.$

c) \(\Leftrightarrow\dfrac{\left(x^2+2\right)^2}{x^2+1}\ge4\Leftrightarrow x^4+4x^2+4\ge4x^2+4\Leftrightarrow x^4\ge0\)

Đẳng thức xảy ra khi $x=0.$

d) Xét hiệu hai vế đi bạn.

Bình luận (0)
Thiên Yết
25 tháng 1 2021 lúc 17:32

Chứng minh:

a, \(a^3+b^3+c^3\dfrac{>}{ }3abc\)

b,\(abc\dfrac{< }{ }\left(\dfrac{a+b+c}{3}\right)^3\)

c,\(\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\dfrac{< }{ }a+b+c\)

d,\(\dfrac{a}{b+c}+\dfrac{c}{a+b}+\dfrac{b}{a+c}\dfrac{>}{ }\dfrac{3}{2}\left(a,b,c>0\right)\)

Bình luận (0)
Big City Boy
Xem chi tiết
Nguyễn Thanh Thủy
Xem chi tiết
Akai Haruma
16 tháng 5 2018 lúc 19:03

Lời giải:

Đặt \(\left\{\begin{matrix} a+b-c=x\\ b+c-a=y\\ c+a-b=z\end{matrix}\right.\Rightarrow \left\{\begin{matrix} b=\frac{x+y}{2}\\ c=\frac{y+z}{2}\\ a=\frac{x+z}{2}\end{matrix}\right.\) \((x,y,z>0\) do $a,b,c$ là ba cạnh tam giác ).

BĐT cần chứng minh tương đương với :

\(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\geq \frac{4}{(x+y)^2}+\frac{4}{(y+z)^2}+\frac{4}{(z+x)^2}\)

Áp dụng BĐT Cauchy:

\(\frac{1}{x^2}+\frac{1}{y^2}\geq \frac{2}{xy}\)

\(\Rightarrow 2\left(\frac{1}{x^2}+\frac{1}{y^2}\right)\geq \left(\frac{1}{x}+\frac{1}{y}\right)^2\)

Theo BĐT S.Vacso: \(\frac{1}{x}+\frac{1}{y}\geq \frac{4}{x+y}\Rightarrow 2\left(\frac{1}{x^2}+\frac{1}{y^2}\right)\geq \frac{16}{(x+y)^2}(*)\)

Hoàn toàn tương tự:

\(2\left(\frac{1}{y^2}+\frac{1}{z^2}\right)\geq \frac{16}{(y+z)^2}; 2\left(\frac{1}{z^2}+\frac{1}{x^2}\right)\geq \frac{16}{(z+x)^2}(**)\)

Cộng theo vế \((*); (**)\) và rút gọn suy ra:

\(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\geq \frac{4}{(x+y)^2}+\frac{4}{(y+z)^2}+\frac{4}{(z+x)^2}\)

Ta có đpcm

Dấu bằng xảy ra khi $x=y=z$ hay $a=b=c$

Bình luận (0)
Thư Trần
Xem chi tiết
Gia Huy
18 tháng 6 2023 lúc 21:35

Đặt \(x=\dfrac{1}{a},y=\dfrac{1}{b},z=\dfrac{1}{c}\) khi đó thu được \(xyz=1\)

Ta có:

\(\dfrac{1}{a^2\left(b+c\right)}=\dfrac{x^2}{\dfrac{1}{y}+\dfrac{1}{z}}=\dfrac{x^2yz}{y+z}=\dfrac{x}{y+z}\)

BĐT cần chứng minh được viết lại thành:\(\dfrac{x}{y+z}+\dfrac{y}{z+x}+\dfrac{z}{x+y}\ge\dfrac{3}{2}\)

\(\Leftrightarrow\left(\dfrac{x}{y+z}+1\right)+\left(\dfrac{y}{z+x}+1\right)+\left(\dfrac{z}{x+y}+1\right)\ge\dfrac{9}{2}\)

\(\Leftrightarrow\left(x+y+z\right)\left(\dfrac{1}{y+z}+\dfrac{1}{z+x}+\dfrac{1}{x+y}\right)\ge\dfrac{9}{2}\)

Đánh giá cuối cùng đúng theo BĐT Cauchy

Vậy BĐT được chứng minh. Đẳng thức xảy ra khi và chỉ khi  a = b = c = 1.

Bình luận (1)