Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hồ Tuyết Anh
Xem chi tiết
Nguyễn Lê Phước Thịnh
13 tháng 5 2022 lúc 20:55

\(=\dfrac{1}{5}x^3y\cdot x^2y^6=\dfrac{1}{5}x^5y^7\)

TV Cuber
13 tháng 5 2022 lúc 20:55

\(=\dfrac{1}{5}.\left(x^3x^2\right)\left(yy^{3.2}\right)=\dfrac{1}{5}x^5y^7\)

`= 1/5 X^5 Y^7`

Phan Hà Thanh
Xem chi tiết
svtkvtm
6 tháng 8 2019 lúc 9:47

\(\left(ab+bc+ca\right)^2=a^2b^2+2ab^2c+2a^2bc+b^2c^2+2c^2ba+c^2a^2=\left(a^2b^2+b^2c^2+c^2a^2\right)+2abc\left(a+b+c\right)=a^2b^2+b^2c^2+c^2a^2\)

Kimian Hajan Ruventaren
Xem chi tiết
Trần Thanh Phương
28 tháng 3 2021 lúc 10:45

a) \(\left\{{}\begin{matrix}2x^2-5xy-y^2=1\\y\left(\sqrt{xy-2y^2}+\sqrt{4y^2-xy}\right)=1\end{matrix}\right.\)

ĐKXĐ:...

\(\Rightarrow y\left(\sqrt{xy-2y^2}+\sqrt{4y^2-xy}\right)=2x^2-5xy-y^2\)

Từ giả thiết dễ thấy \(y\ne0\), chia cả 2 vế cho \(y^2\) ta được:

\(\dfrac{\sqrt{xy-2y^2}+\sqrt{4y^2-xy}}{y}=\dfrac{2x^2-5xy-y^2}{y^2}\)

\(\Leftrightarrow\sqrt{\dfrac{xy-2y^2}{y^2}}+\sqrt{\dfrac{4y^2-xy}{y^2}}=2\left(\dfrac{x}{y}\right)^2-\dfrac{5x}{y}-1\)

\(\Leftrightarrow\sqrt{\dfrac{x}{y}-2}+\sqrt{4-\dfrac{x}{y}}=2\left(\dfrac{x}{y}\right)^2-5\dfrac{x}{y}-1\)

Đặt \(\dfrac{x}{y}=t\) \(\left(2\le t\le4\right)\)

\(\Leftrightarrow\sqrt{t-2}+\sqrt{4-t}=2t^2-5t-1\)

\(\Leftrightarrow\sqrt{t-2}-1+\sqrt{4-t}-1=2t^2-5t-3\)

\(\Leftrightarrow\left(t-3\right)\left(2t+1\right)=\dfrac{t-3}{\sqrt{t-2}+1}+\dfrac{3-t}{\sqrt{4-t}+1}\)

\(\Leftrightarrow\left(t-3\right)\left(2t+1-\dfrac{1}{\sqrt{t-2}+1}+\dfrac{1}{\sqrt{4-t}+1}\right)=0\)

Xét \(2t+1-\dfrac{1}{\sqrt{t-2}+1}+\dfrac{1}{\sqrt{4-t}+1}=2t+\dfrac{\sqrt{t-2}}{\sqrt{t-2}+1}+\dfrac{1}{\sqrt{4-t}+1}>0\forall t\)

\(\Rightarrow t-3=0\)

\(\Leftrightarrow t=3\)

\(\Leftrightarrow\dfrac{x}{y}=3\Leftrightarrow x=3y\)

Thế vào phương trình \(\left(1\right):2\cdot9y^2-5y\cdot3y-y^2-1=0\)

\(\Leftrightarrow2y^2-1=0\)

\(\Leftrightarrow y=\dfrac{1}{\sqrt{2}}\) do \(y>0\)

\(\Leftrightarrow x=\dfrac{3}{\sqrt{2}}\)

Vậy tập nghiệm của phương trình \(\left(x;y\right)=\left(\dfrac{3}{\sqrt{2}};\dfrac{1}{\sqrt{2}}\right)\)

b) \(\left\{{}\begin{matrix}x^3+1=2\left(x^2-x+y\right)\\y^3+1=2\left(y^2-y+x\right)\end{matrix}\right.\)

Trừ theo vế 2 phương trình ta được:

\(x^3-y^3=2\left(x^2-y^2-2x+2y\right)\)

\(\Leftrightarrow\left(x-y\right)\left(x^2+xy+y^2\right)-2\left(x-y\right)\left(x+y\right)+4\left(x-y\right)=0\)

\(\Leftrightarrow\left(x-y\right)\left(x^2+xy+y^2-2\left(x+y\right)+4\right)=0\)

Xét phương trình \(x^2+x\left(y-2\right)+y^2-2y+4=0\)

\(\Delta_x=\left(y-2\right)^2-4\left(y^2-2y+4\right)=-3y^2+4y-8< 0\) nên phương trình vô nghiệm.

Do đó \(x=y\)

Thế vào phương trình \(\left(1\right):x^3+1=2x^2\)

\(\Leftrightarrow\left(x-1\right)\left(x^2-x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1+\sqrt{5}}{2}\\x=\dfrac{1-\sqrt{5}}{2}\end{matrix}\right.\)

Vậy...

ha dinh
Xem chi tiết
Lellllllll
Xem chi tiết

\(a;\left(x+y\right)^5-x^5-y^5=x^5+5x^4y+10x^3y^2+10x^2y^3+5xy^4+y^5-x^5-y^5\)

                                             \(=5x^4y+10x^3y^2+10x^2y^3+5xy^4\)

                                             \(=5xy\left(x^3+2x^2y+2xy^2+y^3\right)\)

                                             \(=5xy\left[\left(x^3+y^3\right)+\left(2x^2y+2xy^2\right)\right]\)

                                             \(=5xy\left[\left(x+y\right)\left(x^2-xy+y^2\right)+2xy\left(x+y\right)\right]\)

                                             \(=5xy\left(x+y\right)\left(x^2-xy+y^2+2xy\right)\)

                                             \(=5xy\left(x+y\right)\left(x^2+xy+y^2\right)\left(dpcm\right)\)

\(\left(ab+bc+ca\right)^2=a^2b^2+b^2c^2+c^2a^2+2a^2bc+2ab^2c+2abc^2\)

                                     \(=a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)\)

                                     \(=a^2b^2+b^2c^2+c^2a^2+2abc\cdot0=a^2b^2+b^2c^2+c^2a^2\left(dpcm\right)\)

michelle holder
Xem chi tiết
Neet
13 tháng 3 2017 lúc 22:28

bài 1:

b) đề như vầy hả :\(\left\{{}\begin{matrix}\left(x^2-1\right)y+\left(y^2-1\right)x=2\left(xy-1\right)\left(1\right)\\4x^2+y^2+2x-y-6=0\left(2\right)\end{matrix}\right.\)

\(Pt\left(1\right)\Leftrightarrow x^2y+xy^2-x-y-2xy+2=0\)

\(\Leftrightarrow xy\left(x+y\right)-\left(x+y\right)-2\left(xy-1\right)=0\)

\(\Leftrightarrow\left(x+y\right)\left(xy-1\right)-2\left(xy-1\right)=0\)

\(\Leftrightarrow\left(xy-1\right)\left(x+y-2\right)=0\Leftrightarrow\left[{}\begin{matrix}xy=1\\x+y=2\end{matrix}\right.\)

*xét \(xy=1\Leftrightarrow x=\dfrac{1}{y}\)thế vào Pt (2):\(\dfrac{4}{y^2}+y^2+\dfrac{2}{y}-y-6=0\)

\(\Leftrightarrow\dfrac{4+2y}{y^2}+\left(y+2\right)\left(y-3\right)=0\)\(\Leftrightarrow\left(y+2\right)\left(\dfrac{2}{y^2}+y-3\right)=0\)

\(\Leftrightarrow\left(y+2\right)\left(y^3-3y^2+2\right)=0\)\(\Leftrightarrow\left(y+2\right)\left(y-1\right)\left(y^2-2y-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}y=-2\\y=1\\y=1-\sqrt{3}\\y=1+\sqrt{3}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{2}\\x=1\\x=-\dfrac{1+\sqrt{3}}{2}\\x=\dfrac{-1+\sqrt{3}}{2}\end{matrix}\right.\)

* xét x+y=2(tương tự thay x=2-y vào Pt (2))

câu 2:

ta đưa về PT ẩn x:\(x^2-x\left(y+1\right)+y^2-y-2=0\)

Pt phải có nghiệm ,xét \(\Delta=\left(y+1\right)^2-4\left(y^2-y-2\right)\ge0\)

\(\Leftrightarrow y^2-2y-3\le0\Leftrightarrow\left(y+1\right)\left(y-3\right)\le0\)

\(\Leftrightarrow-1\le y\le3\).

vì x,y thuộc Z ,lần luợt thay các giá trị của y vừa tìm được vào PT ban đầu ta được các cặp (x,y) t/m là (0;-1);(-1;0);(2;0);(0;2);(3;2);(2;3)

bài 3:

DKXĐ:\(\left\{{}\begin{matrix}2x^2-x\ge0\\2x-x^2\ge0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x\ge\dfrac{1}{2}\\x\le0\end{matrix}\right.\\0\le x\le2\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=0\\\dfrac{1}{2}\le x\le2\end{matrix}\right.\)

bình phương , self study

Buddy
Xem chi tiết

\(\left( {3{x^2} - 5xy - 4{y^2}} \right).\left( {2{x^2} + {y^2}} \right) + \left( {2{x^4}y^2 + {x^3}{y^3} + {x^2}{y^4}} \right):\left( {\dfrac{1}{5}xy} \right)\\\)

\(= 3{x^2}.2{x^2} + 3{x^2}.{y^2} - 5xy.2{x^2} - 5xy.{y^2} - 4{y^2}.2{x^2} - 4{y^2}.{y^2} + 2{x^4}y^2:\left( {\dfrac{1}{5}xy} \right) + {x^3}{y^3}:\left( {\dfrac{1}{5}xy} \right) + {x^2}{y^4}:\left( {\dfrac{1}{5}xy} \right)\\\)

\(= 6{x^4} + 3{x^2}{y^2} - 10{x^3}y - 5x{y^3} - 8{x^2}{y^2} - 4{y^4} + 10{x^3}y + 5{x^2}{y^2} + 5x{y^3}\\\)

\(= 6{x^4} - 4{y^4}+ ( - 10{x^3}y + 10{x^3}y) + \left( { - 5x{y^3} + 5x{y^3}} \right) + \left( {3{x^2}{y^2} - 8{x^2}{y^2} + 5{x^2}{y^2}} \right)\\\)

\(= 6{x^4} - 4{y^4}\)

Nguyễn Trung Hiếu
Xem chi tiết
HT.Phong (9A5)
27 tháng 8 2023 lúc 15:02

a) \(\dfrac{1}{4}x^2y^3\cdot\left(-\dfrac{2}{3}xy\right)\)

\(=\left(\dfrac{1}{4}\cdot-\dfrac{2}{3}\right)\cdot\left(x^2\cdot x\right)\cdot\left(y^3\cdot y\right)\)

\(=-\dfrac{1}{6}x^3y^4\)

b) \(\left(2x^3\right)^3\cdot\left(-5xy^2\right)\)

\(=8x^9\cdot\left(-5xy^2\right)\)

\(=\left(8\cdot-5\right)\cdot\left(x^9\cdot x\right)\cdot y^2\)

\(=-40x^{10}y^2\)

Nguyễn Đức Trí
27 tháng 8 2023 lúc 15:04

a) \(\dfrac{1}{4}x^2y^3.\left(-\dfrac{2}{3}xy\right)\)

\(=-\dfrac{1}{6}x^3y^4\)

Nên bậc của đơn thức là 7

b) \(\left(2x^3\right)^3.\left(-5xy^2\right)\)

\(=8x^9.\left(-5xy^2\right)\)

\(=-40x^9y^2\)

Nên bậc của đơn thức là 11

 

Nguyễn Trung Hiếu
27 tháng 8 2023 lúc 14:56

Giúp mik

 

Trần Thị Tuý Nga
Xem chi tiết
Nguyễn Lê Phước Thịnh
8 tháng 4 2021 lúc 23:29

2: Thay \(x=\dfrac{1}{2}\) và y=2 vào M, ta được:

\(M=\dfrac{2\cdot\left(\dfrac{1}{2}\right)^2\cdot2-1.2\cdot\left(3\cdot\dfrac{1}{2}-2\cdot2\right)}{\dfrac{1}{2}\cdot2}\)

\(=4\cdot\dfrac{1}{4}-1.2\left(\dfrac{3}{2}-4\right)\)

\(=1-1.8+4.8\)

\(=4\)

Nguyễn Lê Phước Thịnh
8 tháng 4 2021 lúc 23:28

1: Ta có: \(\left(-\dfrac{2}{3}x^3y^2\right)z\cdot5xy^2z^2\)

\(=\left(-\dfrac{2}{3}\cdot5\right)\cdot\left(x^3\cdot x\right)\cdot\left(y^2\cdot y^2\right)\cdot\left(z\cdot z^2\right)\)

\(=\dfrac{-10}{3}x^4y^4z^3\)