Tính GTNN của biểu thức :
A=(x-2)(x+2)
Bài 1:a)Tìm GTNN của biểu thức
A=|x-1|+3
B=|x-7|-4
b)Tìm GTNN của biểu thức
C=-|x-3|+2
Bài 2:Tính giá trị biểu thức A=x+y biết |x|=5 và |y|=12
HƯỚNG DẪN:Tìm x,y và chia ra các trường hợp (x,y).Sau đó thay x,y để tính A
Trả lời:
Bài 1: a,
\(A=\left|x-1\right|+3\)
Vì \(\left|x-1\right|\ge0\forall x\)
\(\Rightarrow\left|x-1\right|+3\ge3\forall x\)
Dấu = xảy ra khi x - 1 = 0 \(\Leftrightarrow x=1\)
Vậy GTNN của A = 3 khi x = 1
\(B=\left|x-7\right|-4\)
Vì \(\left|x-7\right|\ge0\forall x\)
\(\Rightarrow\left|x-7\right|-4\ge-4\forall x\)
Dấu = xảy ra khi x - 7 = 0 \(\Leftrightarrow x=7\)
Vậy GTNN của B = -4 khi x = 7
b, \(C=-\left|x-3\right|+2\)
Vì \(\left|x-3\right|\ge0\forall x\)
\(\Rightarrow-\left|x-3\right|\le0\forall x\)
\(\Rightarrow-\left|x-3\right|+2\le2\forall x\)
Dấu = xảy ra khi x - 3 = 0 \(\Leftrightarrow x=3\)
Vậy GTLN của C = 2 khi x = 3
tính GTNN của biểu thức: A = (x-1)(x-2)(x-3)(x-4) + 2012
\(A=\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-4\right)+2012\)
\(=\left(x^2-5x+4\right)\left(x^2-5x+6\right)+2012\)
Đặt \(x^2-5x+4=t\) ta có:
\(A=t\left(t+2\right)+2012\)
\(=t^2+2t+1+2011\)
\(=\left(t+1\right)^2+2011\) \(\ge2011\) \(\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(t+1=0\)
\(\Leftrightarrow\)\(x^2-5x+4+1=0\)
MK lm đc có vậy thôi. bn tham khảo nhé
Min A = 2011
Chỗ đặt của Giang mk nghĩ nên đặt t = x2 - 5x + 5 thì hơn xong áp dụng hằng đẳng thức số 3 sẽ dễ hơn!
x = x=5/2-căn bậc hai(5)/2và x=căn bậc hai(5)/2+5/2
\(A=x^2+2x+2xy+2y^2+4y+2021\)
Tính GTNN của biểu thức A
Lời giải:
$A=x^2+2x+2xy+2y^2+4y+2021$
$=(x^2+2xy+y^2)+2x+y^2+4y+2021$
$=(x+y)^2+2(x+y)+1+(y^2+2y+1)+2019$
$=(x+y+1)^2+(y+1)^2+2019\geq 2019$
Vậy $A_{\min}=2019$ khi $x+y+1=y+1=0$
$\Leftrightarrow (x,y)=(0,-1)$
a) Tìm GTNN của biểu thức A = x2 - 2x +5
b) Tìm GTNN của biểu thức B = 2x2 - 6x
c) Tìm GTNN của biểu thức C = 4x - x2 = 3
a) x2 - 2x + 5 = (x - 1)2 + 4 >= 4
Min là 4 khi x = 1
tính GTNN của biểu thức : B=4*x^2 + 4*x + 2
\(4x^2+4x+2=\left(2x+1\right)^2+1\)
Ta có \(\left(2x+1\right)^2\ge0,\forall x\)
\(\Leftrightarrow\left(2x+1\right)^2+1\ge1\)
Vậy GTNN của biểu thức là \(1\Leftrightarrow x=-\dfrac{1}{2}\)
Ta có: B= 4x2 + 4x +2 = (4x2+4x+1)+1
= [(2x)2+2.2x.1+12] +1
= (2x+1)2+1 \(\ge1\)
( do (2x+1)2 \(\ge0\)
=> \(B\ge1\)
Dấu"=" xảy ra <=> (2x+1)2= 0 <=> 2x+1 = 0 <=> 2x= -1 <=> x= \(\dfrac{-1}{2}\)
Vậy Bmim= 1 <=> x=\(\dfrac{-1}{2}\)
Hoctot
Ta có: \(B=4x^2+4x+2\)
\(=4x^2+4x+1+1\)
\(=\left(2x+1\right)^2+1\ge1\forall x\)
Dấu '=' xảy ra khi \(x=-\dfrac{1}{2}\)
Cho biểu thức P= x^4+x/x^2-x+1 +1 - 2x^2+3x+1/x+1
a). Rút gọn biểu thức P
b). Tính GTNN của P
(a) Điều kiện : \(x\ne-1.\)
Ta có : \(P=\dfrac{x^4+x}{x^2-x+1}+1-\dfrac{2x^2+3x+1}{x+1}\)
\(=\dfrac{x\left(x^3+1\right)}{x^2-x+1}+1-\dfrac{\left(2x+1\right)\left(x+1\right)}{x+1}\)
\(=\dfrac{x\left(x+1\right)\left(x^2-x+1\right)}{x^2-x+1}+1-\left(2x+1\right)\)
\(=x\left(x+1\right)+1-2x-1\)
\(=x^2-x.\)
Vậy : Với mọi \(x\ne-1\) thì \(P=x^2-x.\)
(b) Ta có : \(P=x^2-x\)
\(=\left[x^2-2\cdot x\cdot\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2\right]-\left(\dfrac{1}{2}\right)^2\)
\(=\left(x-\dfrac{1}{2}\right)^2-\dfrac{1}{4}\ge-\dfrac{1}{4}\)
Vậy : \(MinP=-\dfrac{1}{4}.\) Dấu đẳng thức xảy ra khi và chỉ khi \(x=\dfrac{1}{2}.\)
Tìm GTNN của các biểu thức : a, A= (x-1)(x-3)(x^2-4x+5); b, B= (x^2-x+6)(x^2+x+2); c, C=(x+8)^4+(x+6)^4; Tìm GTNN của biểu thức A= x^2-4x+1 / x^2
1:Cho x+y=2.Tính g.trị của biểu thức
A=x2+2xy+y2-3x-3y+1
2: a) Tìm GTNN của biểu thức
A=x2-5x+6
b) Tìm GTLN của biểu thức
B=3-2x-x2
ta có:
. Tìm GTLN, GTNN của biểu thức:
1) Tìm GTNN của biểu thức:
a) A = x2 - 7x +11. | b) D = x - 2 + x - 3 . |
c) C = 3 - 4x . x2 +1 | d) B = -5 . x2 - 4x + 7 |
e) x2 - x +1 . M = + x +1 x2 | f) P x 1 x 2 x 3 x 6 . |
2) Tìm GTLN của biểu thức
|
| 2x 2 + 4x + 9 |
|
b) | A = x 2 + 2x + 4 . |
|
| ||||||||||||||||||||
c) C = (x2 - 3x +1)(21+ 3x - x2 ) . | d) D = 6x - 8 . x2 +1 |
1:
a: =x^2-7x+49/4-5/4
=(x-7/2)^2-5/4>=-5/4
Dấu = xảy ra khi x=7/2
b: =x^2+x+1/4-13/4
=(x+1/2)^2-13/4>=-13/4
Dấu = xảy ra khi x=-1/2
e: =x^2-x+1/4+3/4=(x-1/2)^2+3/4>=3/4
Dấu = xảy ra khi x=1/2
f: x^2-4x+7
=x^2-4x+4+3
=(x-2)^2+3>=3
Dấu = xảy ra khi x=2
2:
a: A=2x^2+4x+9
=2x^2+4x+2+7
=2(x^2+2x+1)+7
=2(x+1)^2+7>=7
Dấu = xảy ra khi x=-1
b: x^2+2x+4
=x^2+2x+1+3
=(x+1)^2+3>=3
Dấu = xảy ra khi x=-1
Cho biểu thức p=(x-5)/(sqrt(x-2)-sqrt(3)
a/Rút gọn p
b/tìm giá trị của x để p đạt GTNN .tính GTNN đó
P=(√x+3√x+2+4x√x+3x+9x−√x−6):(√x√x+3+2√x+3x+5√x+6)
=[(√x+3)(√x−3)(√x+2)(√x−3)+4x√x+3x+9(√x+2)(√x−3)]:[√x(√x+2)(√x+3)(√x+2)+2√x+3(√x+3)(√x+2)]
=x−9+4x√x+3x+9(√x+2)(√x−3):x+2√x+2√x+3(√x+3)(√x+2)
=4x√x+4x(√x+2)(√x−3)⋅(√x+3)(√x+2)(√x+1)(√x+3)
=4x(√x+1)(√x−3)(√x+1)=4x√x−3
b/ P=48⇔4x√x−3=48
⇔4x=48√x−144
⇔4x−48√x+144=0
⇔(2√x−12)2=0
⇔2√x−12=0⇔√x=6⇔x=36(TM)
Vậy................