Biến đổi (theo hằng đẳng thức)
4b^2+a^2+4ab
-49-2a^4+14 căn 2 *a^2
Biến đổi:
1,4b^2+a^2+4ab
2,-49-2a^4+14 căn 2*a^2
Mình xin cảm ơn tất cả các bạn nào trả lời nhé
1, \(4b^2+a^2+4ab=\left(2b+a\right)^2\)
2, \(-49-2a^4+14\sqrt{2}a^2=-\left(2a^4-2.7\sqrt{2}a^2+49\right)=-\left(\sqrt{2}a^2-7\right)^2\)
1: \(a^2+4ab+4b^2=\left(a+2b\right)^2\)
2: \(-49-2a^4+14\sqrt{2a^2}\)
\(=-\left(2a^4-2\cdot\sqrt{2a^2}\cdot7+49\right)\)
\(=-\left(\sqrt{2a^2}-7\right)^2\)
Bài 2 Chứng minh hằng đẳng thức
a. (a + b + c) 2 = a 2 + b 2 + c 2 + 2ab + 2ac + 2bc
b. (a + b) 2 + (a − b) 2 = 2a 2 + 2b 2 .
c. (a + b) 2 − (a − b) 2 = 4ab.
a, \(\left(a+b+c\right)^2=\left[\left(a+b\right)+c\right]^2=\left(a+b\right)^2+2c\left(a+b\right)+c^2=a^2+b^2+c^2+2ab+2ac+2bc\)
b, \(\left(a+b\right)^2+\left(a-b\right)^2=a^2+2ab+b^2+a^2-2ab+b^2=2a^2+2b^2\)
c, \(\left(a+b\right)^2-\left(a-b\right)^2=\left(a+b-a+b\right)\left(a+b+a-b\right)=2b.2a=4ab\)
\(\left(a+b+c\right)^2=\left[\left(a+b\right)+c\right]^2=\left(a+b\right)^2+2\cdot\left(a+b\right)\cdot c+c^2\\ =a^2+2ab+b^2+2ac+2bc+c^2\\ =a^2+b^2+c^2+2ab+2ac+2bc\)
\(\left(a+b\right)^2+\left(a-b\right)^2=a^2+2ab+b^2+a^2-2ab+b^2\\ 2a^2+2b^2\)
\(\left(a+b\right)^2-\left(a-b\right)^2=\left(a+b+a-b\right)\left(a+b-a+b\right)\\ =2a\cdot2b=4ab\)
a) (a+b+c)2 = (a+b)2 + 2(a+b)c + c2 = a2 + 2ab +b2 + 2ac+ 2bc+ c2
b) (a+b)2 + (a-b)2 = a2+ 2ab+ b2+ a2- 2ab +b2= 2a2 + 2b2
c) (a+b)2- (a-b)2 = a2+ 2ab+ b2- a2+ 2ab- b2 = 4ab
a) Chứng minh hằng đẳng thức sau :
\(\frac{1}{a-2b}+\frac{6b}{4b^2-a^2}-\frac{2}{a+2b}=-\frac{1}{2a}\left(\frac{a^2+4b^2}{a^2-4b^2}+1\right)\)
b) Chứng minh hằng đẳng thức Ơle sau :
\(a^3+b^3+\left(\frac{b\left(2a^3+b^3\right)}{a^3-b^3}\right)^3=\left(\frac{a\left(a^3+2b^3\right)}{a^3-b^3}\right)^3\)
a) Biến đổi VT . Mẫu chung là ( a + 2b )( a - 2b )
\(VT=\frac{a+2b-6b-2\left(a-2b\right)}{a^2-4b^2}=-\frac{a}{a^2-4b^2}\)( 1 )
Biến đổi VP
\(-\frac{1}{2a}\left(\frac{a^2+4b^2}{a^2-4b^2}+1\right)=-\frac{1}{2a}\cdot\frac{a^2+4b^2+a^2-4b^2}{a^2-4b^2}\)
\(=-\frac{1}{2a}\cdot\frac{2a^2}{a^2-4b^2}=-\frac{a}{a^2-4b^2}\)( 2 )
Từ ( 1 ) và ( 2 ) => VT = VP ( đpcm )
b) \(a^3+b^3+\left(\frac{b\left(2a^3+b^3\right)}{a^3-b^3}\right)=\left(\frac{a\left(a^3+2b^3\right)}{a^3-b^3}\right)^3\)
<=> \(b^3+\left(\frac{b\left(2a^3+b^3\right)}{a^3-b^3}\right)^3=\left(\frac{a\left(a^3+2b^3\right)}{a^3-b^3}\right)-a^3\)( * )
Biến đổi VT của ( * ) ta có :
\(VT=\left[b+\frac{b\left(2a^3+b^3\right)}{a^3-b^3}\right]\left[b^2-\frac{b^2\left(2a^3+b^3\right)}{a^3-b^3}+\frac{b^2\left(2a^3+b^3\right)^2}{\left(a^3-b^3\right)^2}\right]\)
\(=\frac{3a^3b}{a^3-b^3}\cdot\frac{3a^6b^2+3a^3b^5+3b^8}{\left(a^3-b^3\right)^2}\)
\(=\frac{9a^3b^3}{\left(a^3-b^3\right)^3}\left(a^6+a^3b^3+b^6\right)\)( 1 )
\(VP=\left[\frac{a\left(a^3+2b^3\right)}{a^3-b^3}-a\right]\left[\frac{a^2\left(a^3+2b^3\right)^2}{\left(a^3-b^3\right)^2}+\frac{a^2\left(a^3+2b^3\right)}{a^3-b^3}+a^2\right]\)
\(=\frac{3ab^3}{a^3-b^3}\cdot\frac{3a^8+3a^5b^3+3a^2b^6}{\left(a^3-b^3\right)^2}\)
\(=\frac{9a^3b^3}{\left(a^3-b^3\right)^3}\left(a^6+a^3b^3+b^6\right)\)( 2 )
Từ ( 1 ) và ( 2 ) => VT = VP => ( * ) đúng
=> Hằng đẳng thức đúng
(a+b)2-(a-b)2
=[(a+b)+(a-b)].[(a+b)-(a-b)]
=2a.2b=4ab
Các bạn giải thích giùm mk đi!
hằng đẳng thức số 3 nha
Gọi
( a + b )2 = c
( a - b )2 = d
= c2 - d2
Áp dụng hằng đẳng thức số a2 - b2 = ( a + b ) ( a - b ) ta có :
c2 - d2
= ( c - d ) ( c + d )
= [ ( a +b ) - ( a - b ) ] . [ ( a + b ) - ( a - b ) ]
= 2a . 2b
= 4ab
Study well
bn giải thích tại sao lại bằng 2a.2b zậy?
giải
[ ( a + b ) + ( a - b ) ] . [ ( a + b ) - ( a - b ) ]
= [ a + b + a - b ] . [ a + b - a + b ]
= ( a + a ) ( b + b )
= 2a . 2b = 4ab
Cho mình hỏi các hằng đẳng thức này có tên là gì vậy:
a, (a+b+c)^3 = a^2 + b^2 + c^2 + 2ab + 2bc + 2ca
b, (a+b)^4 = a^4 + 4a^3b + 6a^2b^2 + 4ab^3 + b^4
c, (a+b)^5 = a^5 + 5a^4b + 10a^3b^2 + 10a^2b^3 + 5ab^4 + b^5
a, \(\left(a+b+c\right)^2=a^2+b^2+c^2+2ab+2bc+2ac\) Hệ thức bình phương tổng ba số
\(\left(a+b+c\right)^3=a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)\) Hệ thức lập phương tổng ba số
Tính giá trị phân thức M = (4ab + a ^ 2 + 4b ^ 2)/(ab) với 2a - 20b = 0 và a,b≠0
Biến đổi thành hằng đẳng thức
\(\sqrt{4-2\sqrt{3}}\)
\(=\sqrt{3-2\sqrt{3}+1}=\sqrt{\left(\sqrt{3}-1\right)^2}=\left|\sqrt{3}-1\right|=\sqrt{3}-1\)
Chứng minh hằng đẳng thức:
1) (a+b)^2-(a-b)^2=4ab
3) (a+b)^2-4ab=(a-b)^2
5) a^3+b^3=(a+b)^3-3ab(a+b)
1) biến đổi vế trái:
= a2+2ab+b2 -a2 +2ab -b2
=4ab = vế phải ( đpcm)
3;5 tuong tu
1) (a + b)2 - (a - b)2 = a2 + 2ab + b2 - a2 + 2ab - b2 = 4ab
3) (a + b)2 - 4ab = a2 + 2ab + b2 - 4ab = a2 - 2ab + b2 = (a - b)2
5) a3 + b3 = a3 + 3a2b + 3ab2 + b3 - 3a2b - 3ab2 = (a + b)3 - 3ab(a + b)
1) (a+b)^2 - (a-b)^2 = 4ab
VT= (a + b - a +b) (a+b + a-b)
= 2b * 2a
= 4ab = VP
Vậy (a+b)^2 - (a-b)^2 = 4ab
2) (a+b)^2 - 4ab = (a-b)^2
VT= (a+b)^2 - 4ab
= a^2 + 2ab + b^2 - 4ab
= a^2 - 2ab + b^2
= (a-b)^2 = VP
Vậy (a+b)^2 - 4ab = (a-b)^2
Bài 1: biến đổi biểu thức trong √ thành hằng đẳng thức 1 hoặc 2 rồi phá bớt một lớp √
a) căn 7-210
b) căn tất cả 21-4 căn 7
c) căn tất cả 11+4 căn 7
d) căn tất cả 11+2 căn 8
e) căn tất cả 12+ 2 căn 35
g) căn tất cả 25+ 4 căn 6
Giúp em với ạ:(( em đang cần gấp