Giải BĐT:
\(4\le n!+\left(n+1\right)!< 50\)
tìm số tự nhiên n nhỏ nhất để có bđt sau:
\(\left(a^2+b^2+c^2\right)^2\le n\left(a^4+b^4+c^4\right)\)
đây là bđt bunhiacopski đấy, sẽ là
\(\left(a^2+b^2+c^2\right)^2\le\left(1^2+1^2+1^2\right)\left(a^{2^2}+b^{2^2}+c^{2^2}\right)\)
\(\Rightarrow n=1^2+1^2+1^2=3\)
Cho x,y,z thuộc R thoả mãn \(x\left(x-1\right)+y\left(y-1\right)+z\left(z-1\right)\le\dfrac{4}{3}\)
Tìm Max P= x+y+z
( Sử dụng bđt Bunhiacopxki)
Chm bđt:
\(\left(a_1+a_2+...+a_n\right)^2\le n\left(a_1^2+a_2^2+...+a_n^2\right)\)
Chm bđt:
\(\left(a_1+a_2+...+a_n\right)^2\le n\left(a_1^2+a_2^2+...+a_n^2\right)\)
Chứng minh BĐT: \(\sqrt{n+a}+\sqrt{n-a}< 2\sqrt{n}\) với \(0< \left|a\right|\le n\)
Ta có:\(\left|a\right|>0\)
\(\Leftrightarrow a^2>0\)
\(\Leftrightarrow-a^2< 0\)
\(\Leftrightarrow n^2-a^2< n^2\)
\(\Leftrightarrow\sqrt{n^2-a^2}< \sqrt{n^2}\)(\(n\ge a\Leftrightarrow n^2\ge a^2\Leftrightarrow n^2-a^2\ge0\))
\(\Leftrightarrow\sqrt{n^2-a^2}< n\)
\(\Leftrightarrow2\sqrt{n^2-a^2}< 2n\)
\(\Leftrightarrow\left(n+a\right)+\left(n-a\right)+2\sqrt{\left(n+a\right)\left(n-a\right)}< 2n+n+a+n-a\)
\(\Leftrightarrow\left(\sqrt{n+a}+\sqrt{n-a}\right)^2< 4n\)
\(\Leftrightarrow\sqrt{n+a}+\sqrt{n-a}< 2\sqrt{n}\)
Cách khác:
Với x,y \(\ge\)0 luôn có: \(x+y\le\sqrt{2\left(x^2+y^2\right)}\) (1)
Thật vậy (1) <=> \(x^2+y^2+2xy\le2\left(x^2+y^2\right)\)
<=>\(0\le x^2-2xy+y^2=\left(x-y\right)^2\) (luôn đúng)
Dấu "=" xảy ra <=> x=y\(\ge0\)
Do \(0\le\left|a\right|\le n\) => \(n-a\ge0\) ( khi cả a âm hay a dương)
Áp dụng bđt (1) có: \(\sqrt{n+a}+\sqrt{n-a}\le\sqrt{2\left(n+a+n-a\right)}\)=\(\sqrt{2.2n}=2\sqrt{n}\)
Dấu "=" xảy ra <=> \(n+a=n-a\) <=> 2a=0 <=> a=0( không thỏa mãn đk)
=> Dấu "=" không xảy ra
Vậy \(\sqrt{n+a}+\sqrt{n-a}< 2\sqrt{n}\)
P/s : không phải lúc nào cũng có thể làm giống NK hoặc cách mình nên bạn hãy tham khảo
Cho \(-1\le a\le1\). Tìm GTLN của b sao cho BĐT đúng \(\sqrt{1-a^4}+\left(b+1\right)\left(\sqrt{1+a^2}+\sqrt{1-a^2}\right)+b-4\le0\)
Đặt \(\sqrt{1+a^2}+\sqrt{1-a^2}=x\Rightarrow\sqrt{2}\le x\le2\)
\(x^2=2+2\sqrt{1-a^4}\Rightarrow\sqrt{1-a^4}=\dfrac{x^2-2}{2}\)
\(\Rightarrow\dfrac{x^2-2}{2}+\left(b+1\right)x+b-4\le0\)
\(\Rightarrow x^2+2\left(b+1\right)x+2b-10\le0\)
\(\Rightarrow x^2+2x-10\le-2b\left(x+1\right)\)
\(\Rightarrow-2b\ge\dfrac{x^2+2x-10}{x+1}\)
\(\Rightarrow-2b\ge\max\limits_{\left[\sqrt{2};2\right]}f\left(x\right)\) với \(f\left(x\right)=\dfrac{x^2+2x-10}{x+1}\)
Xét trên \(\left[\sqrt{2};2\right]\) ta có:
\(f\left(x\right)=\dfrac{3x^2+6x-30}{3\left(x+1\right)}=\dfrac{3x^2+8x-28-2\left(x+1\right)}{3\left(x+1\right)}=\dfrac{\left(3x+14\right)\left(x-2\right)}{3\left(x+1\right)}-\dfrac{2}{3}\le-\dfrac{2}{3}\)
\(\Rightarrow-2b\ge-\dfrac{2}{3}\Rightarrow b\le\dfrac{1}{3}\)
Vậy \(b_{max}=\dfrac{1}{3}\)
CMR với mọi số nguyên a,b,c ta đều có BĐT:
\(\dfrac{a^2}{\left(2a+b\right)\left(2a+c\right)}+\dfrac{b^2}{\left(2b+a\right)\left(2b+c\right)}+\dfrac{c^2}{\left(2c+a\right)\left(2c+b\right)}\le\dfrac{1}{3}\)
ta có:\(ab+bc+ac=abc\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\)
Áp dụng BĐT :\(\frac{1}{x+y}\le\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}\right)\)ta có:
\(\frac{1}{2a+b+c}=\frac{1}{\left(a+c\right)+\left(a+b\right)}\le\frac{1}{4}\left(\frac{1}{a+b}+\frac{1}{a+c}\right).\)\(\le\frac{1}{4}\left(\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}\right)+\frac{1}{4}\left(\frac{1}{a}+\frac{1}{c}\right)\right)=\frac{1}{16}\left(\frac{2}{a}+\frac{1}{b}+\frac{1}{c}\right).\)
Tương tự ta có :\(\frac{1}{a+2b+c}\le\frac{1}{16}\left(\frac{1}{a}+\frac{2}{b}+\frac{1}{c}\right);\frac{1}{a+b+2c}\le\frac{1}{16}\left(\frac{1}{a}+\frac{1}{b}+\frac{2}{c}\right).\)
Cộng ba BĐT lại ta có:
\(Q\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=\frac{1}{4}.\)
Đẳng thức xảy ra khi \(a=b=c=3\).Max=\(\frac{1}{4}\)
Chứng minh rằng:
\(1,C^0_n-C^1_n+C^2_n-C^3_n+...+\left(-1\right)^kC^k_n=\left(-1\right)^kC^k_{n-1}\)
Giải phương trình, bất phương trình:
1, \(C_x^{x-1}+C^{x-2}_x+...+C^{x-10}_x=1023\)
2, \(4\le n!+\left(n+1\right)!< 50\)
3, \(n!< 999\)
4, \(n^3+\frac{n!}{\left(n-2\right)!}\le10\)