cho abc khác 0 và \(\dfrac{a-b+c}{c}=\dfrac{b+c-a}{a}=\dfrac{a+c-b}{b}\) Tính P\(=\left(1+\dfrac{b}{a}\right)\left(1+\dfrac{c}{b}\right)\left(1+\dfrac{a}{c}\right)\) giúp mik nha! help me =='
Cho a,b,c khác 0 và đôi 1 khác nhau t/m a+b+c=0. Tính
A=\(\left(\dfrac{a-b}{c}+\dfrac{b-c}{a}+\dfrac{c-a}{b}\right)\left(\dfrac{c}{a-b}+\dfrac{a}{b-c}+\dfrac{b}{c-a}\right)\)
Cho các số a,b,c khác 0 thỏa mãn \(\dfrac{a+b-c}{c}\) =\(\dfrac{a+c-b}{b}\)=\(\dfrac{b+c-a}{a}\)
Tính P= \(\dfrac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}\)
Áp dụng t/c dtsbn:
\(\dfrac{a+b-c}{c}=\dfrac{a+c-b}{b}=\dfrac{b+c-a}{a}=\dfrac{a+b+c}{a+b+c}=1\\ \Rightarrow\left\{{}\begin{matrix}a+b-c=c\\a+c-b=b\\b+c-a=a\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a+b=2c\\a+c=2b\\b+c=2a\end{matrix}\right.\Rightarrow a=b=c\)
\(\Rightarrow P=\dfrac{\left(a+a\right)\left(a+a\right)\left(a+a\right)}{a\cdot a\cdot a}=\dfrac{8a^3}{a^3}=8\)
\(\dfrac{a+b-c}{c}=\dfrac{a+c-b}{b}=\dfrac{b+c-a}{a}=\dfrac{a+b-c+a+c-b+b+c-a}{a+b+c}=\dfrac{a+b+c}{a+b+c}=1\)
\(\Rightarrow\left\{{}\begin{matrix}a+b-c=c\\a+c-b=b\\b+c-a=a\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a+b=2c\\a+c=2b\\b+c=2a\end{matrix}\right.\)
\(P=\dfrac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}=\dfrac{2a.2b.2c}{abc}=8\)
Áp dụng tính chất dãy tỉ số bằng nhau:
(a + b - c)/c = (a + c - b)/b = (b + c - a)/a = (a + b - c + a + c - b + b + c - a)/(a + b + c) = 1
--> a + b - c = c
a + c - b = b
b + c - a = a
--> a + b = 2c
a + c = 2b
b + c = 2a
Ta có: P = (a + b)(b + c)(a + c)/(abc) = 2c.2a.2b/(abc) = 8
cho a,b,c khác 0 thỏa mãn \(\dfrac{a+b-c}{c}=\dfrac{b+c-a}{a}=\dfrac{c+a-b}{b}\). Tính giá trị biểu thức \(P=\dfrac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a+b-c}{c}=\dfrac{b+c-a}{a}=\dfrac{c+a-b}{b}=\dfrac{a+b-c+b+c-a+c+a-b}{c+a+b}=\dfrac{a+b+c}{a+b+c}=1\)
Do đó:
\(\left\{{}\begin{matrix}a+b-c=c\\b+c-a=a\\c+a-b=b\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a+b=2c\\b+c=2a\\c+a=2b\end{matrix}\right.\)
Thay a+b=2c;b+c=2a và c+a=2b vào biểu thức \(P=\dfrac{\left(a+b\right)\left(b+c\right)\left(a+b\right)}{abc}\), ta được:
\(P=\dfrac{2a\cdot2b\cdot2c}{abc}=\dfrac{8abc}{abc}=8\)
Vậy: P=8
Ta có: \(\dfrac{a+b-c}{c}=\dfrac{b+c-a}{a}=\dfrac{c+a-b}{b}\) = \(\dfrac{a+b-c+b+c-a+c+a-b}{a+b+c}\) (t/c dãy tỉ số bằng nhau)
hay \(\dfrac{a+b-c}{c}=\dfrac{b+c-a}{a}=\dfrac{c+a-b}{b}=1\) (1)
Ta cũng có: \(\dfrac{a+b-c}{c}=\dfrac{b+c-a}{a}=\dfrac{a+b-c+b+c-a}{a+c}\) (t/c dãy tỉ số bằng nhau)
hay \(\dfrac{a+b-c}{c}=\dfrac{2b}{a+c}\) (2)
Từ (1) và (2) \(\Rightarrow\) \(\dfrac{2b}{a+c}=1\) \(\Leftrightarrow\) a + c = 2b (*)
Tương tự ta cũng có: a + b = 2c (**); b + c = 2a (***)
Thay (*); (**); (***) vào P ta được:
P = \(\dfrac{2a.2b.2c}{abc}\) = 2.2.2 = 8
Vậy P = 8
Chúc bn học tốt!
Cho \(a^3+b^3+c^3=3abc\)(abc khác 0)
Tính N= \(\left(1+\dfrac{a}{b}\right)\left(1+\dfrac{b}{c}\right)\left(1+\dfrac{c}{a}\right)\)
Ta có: \(a^3+b^3+c^3=3abc\)
\(\Leftrightarrow a^3+b^3+c^3-3abc=0\)
\(\Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc=0\)
\(\Leftrightarrow\left(a+b+c\right)\left[\left(a+b\right)^2-c\left(a+b\right)+c^2\right]-3ab\left(a+b+c\right)=0\)
\(\Leftrightarrow\left(a+b+c\right)\left[a^2+2ab+b^2-ac-bc+c^2-3ab\right]=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)
\(\Leftrightarrow\left(a+b+c\right)\cdot\left(2a^2+2b^2+2c^2-2ab-2bc-2ac\right)=0\)
\(\Leftrightarrow\left(a+b+c\right)\left[\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(a^2-2ac+c^2\right)\right]=0\)
\(\Leftrightarrow\left(a+b+c\right)\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2\right]=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a+b+c=0\\\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}a+b+c=0\\a=b=c\end{matrix}\right.\)
Ta có: \(N=\left(1+\dfrac{a}{b}\right)\left(1+\dfrac{b}{c}\right)\left(1+\dfrac{c}{a}\right)\)
\(=\dfrac{a+b}{b}\cdot\dfrac{b+c}{c}\cdot\dfrac{a+c}{a}\)
Trường hợp 1: a+b+c=0
\(\Leftrightarrow\left\{{}\begin{matrix}a+b=-c\\a+c=-b\\b+c=-a\end{matrix}\right.\)
\(\Leftrightarrow N=\dfrac{-c}{b}\cdot\dfrac{-a}{c}\cdot\dfrac{-b}{a}=\dfrac{-\left(a\cdot b\cdot c\right)}{a\cdot b\cdot c}=-1\)
Trường hợp 2: a=b=c
\(\Leftrightarrow N=\dfrac{b+b}{b}\cdot\dfrac{a+a}{a}\cdot\dfrac{c+c}{c}=2\cdot2\cdot2=8\)
1, Ta có a^3+b^3+c^3=3abc
-> a^3+b^3+c^3+3a^2b+3ab^2=3abc+3a^2b+3ab^2
-> (a+b)3 + c^3 - 3ab(a+b+c)=0
-> (a+b+c). ((a+b)^2-(a+b).c+c^2)-3ab(a+b+c)=0
-> (a+b+c)(a^2+2ab+b^2-ac-bc+c^2-3ab)=0
Th1: a+b+c=0
->P= a+b/2 . b+c/2 . c+a/2
= (-c)(-a)(-b)/2=-1
TH2 a^2+b^2+c^2-ab-bc-ca=0
->2a^2+2b^2+2c^2-2ab-abc-2ac=0
->(a^2-2ab+b^2)+(a^2-2ac+c^2)+(b^2-2bc+c^2)=0
-> (a-b)^2+(a-c)^2+(b-c)^2=0
Mà (a-b)^2+(a-c)^2+(b-c)^2>= 0
Dấu = xảy ra (=)a-b=0
b-c=0
a-c=0
-> a=b=c
->P= 1+a/b+1+b/c+1+c/a=2+2+2= 8
a) Tìm x biết: (3x-1)6=(3x-1)4
b. Cho a,b,c là các số khác 0 sao cho \(\dfrac{a+b-c}{c}=\dfrac{a-b+c}{b}=\dfrac{-a+b+c}{a}\). Tính giá trị của biểu thức: M=\(\dfrac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}\)
cho a,b,c đôi 1 khác nhau và khác 0. CMR: a+b+c=0 thì \(\left(\dfrac{a-b}{c}+\dfrac{b-c}{a}+\dfrac{c-a}{b}\right)\left(\dfrac{c}{a-b}+\dfrac{a}{b-c}+\dfrac{b}{c-a}\right)=9\)
Ta có:
\(\left(\dfrac{a-b}{c}+\dfrac{b-c}{a}+\dfrac{c-a}{b}\right)\left(\dfrac{c}{a-b}+\dfrac{a}{b-c}+\dfrac{b}{c-a}\right)\)
\(=\dfrac{c}{a-b}\left(\dfrac{a-b}{c}+\dfrac{b-c}{a}+\dfrac{c-a}{b}\right)+\dfrac{a}{b-c}\left(\dfrac{a-b}{c}+\dfrac{b-c}{a}+\dfrac{c-a}{b}\right)+\dfrac{b}{c-a}\left(\dfrac{a-b}{c}+\dfrac{b-c}{a}+\dfrac{c-a}{b}\right)\)
Xét:
\(\dfrac{c}{a-b}\left(\dfrac{a-b}{c}+\dfrac{b-c}{a}+\dfrac{c-a}{b}\right)\)
\(=1+\dfrac{c}{a-b}\left[\dfrac{b\left(b-c\right)+a\left(c-a\right)}{ab}\right]=1+\dfrac{c}{a-b}\left(\dfrac{b^2-bc+ac-a^2}{ab}\right)\)
\(=1+\dfrac{c}{a-b}\left[\dfrac{\left(b-a\right)\left(b+a\right)-c\left(b-a\right)}{ab}\right]=1+\dfrac{c}{a-b}.\dfrac{\left(b-a\right)\left(a+b-c\right)}{ab}\)
\(=1-\dfrac{c\left(a+b-c\right)}{ab}=1-\dfrac{c.\left(-2c\right)}{ab}=1+\dfrac{2c^2}{ab}\) (do \(a+b+c=0\Rightarrow a+b=-c\))
Tương tự:
\(\dfrac{a}{b-c}\left(\dfrac{a-b}{c}+\dfrac{b-c}{a}+\dfrac{c-a}{b}\right)=1+\dfrac{2a^2}{bc}\)
\(\dfrac{b}{c-a}\left(\dfrac{a-b}{c}+\dfrac{b-c}{a}+\dfrac{c-a}{b}\right)=1+\dfrac{2b^2}{ca}\)
\(\Rightarrow P=3+2\left(\dfrac{a^2}{bc}+\dfrac{b^2}{ca}+\dfrac{c^2}{ab}\right)=3+\dfrac{2\left(a^3+b^3+c^3\right)}{abc}\)
Mặt khác ta có đằng thức quen thuộc:
Khi \(a+b+c=0\) thì \(a^3+b^3+c^3=3abc\)
\(\Rightarrow P=3+\dfrac{2.3abc}{abc}=9\)
Cho: \(\dfrac{a}{b-c}+\dfrac{b}{c-a}+\dfrac{c}{a-b}=0\). Chứng minh: \(\dfrac{a}{\left(b-c\right)^2}+\dfrac{b}{\left(c-a\right)^2}+\dfrac{c}{\left(a-b\right)^2}=0\) trong đó a, b, c đôi 1 khác nhau và khác 0
Cho: \(\left(a+b+c\right)^2=a^2+b^2+c^2\) và a, b, c khác 0. CMR: \(\dfrac{1}{a^3}+\dfrac{1}{b^3}+\dfrac{1}{c^3}=\dfrac{3}{abc}\)
Cho: \(\left(a+b+c\right)^2=a^2+b^2+c^2\) và a,b, c khác 0. CMR: \(\dfrac{1}{a^3}+\dfrac{1}{b^3}+\dfrac{1}{c^3}=\dfrac{3}{abc}\)
Từ đkđb
\(\Leftrightarrow2\left(ab+bc+ac\right)=0\)
\(\Leftrightarrow\dfrac{ab+bc+ac}{abc}=0\)
\(\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\)
\(\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}=-\dfrac{1}{c}\)
\(\Leftrightarrow\dfrac{1}{a^3}+\dfrac{1}{b^3}+\dfrac{3}{ab}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)=-\dfrac{1}{c^3}\)
\(\Leftrightarrow\dfrac{1}{a^3}+\dfrac{1}{b^3}+\dfrac{1}{c^3}=\dfrac{3}{abc}\)
Hớ hớ bài này mình cũng làm rồi.
Ta có: (a+b+c)2=a2+b2+c2
<=> a2+b2+c2+2(ab+bc+ca)=a2+b2+c2
<=>2(ab+bc+ca)=0
<=>ab+bc+ca=0
\(\Leftrightarrow\dfrac{ab+bc+ca}{abc}=0\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\)
=>\(\dfrac{1}{a}+\dfrac{1}{b}=-\dfrac{1}{c}\Rightarrow\left(\dfrac{1}{a}+\dfrac{1}{b}\right)^3=\left(-\dfrac{1}{c}\right)^3\)
=> \(\dfrac{1}{a^3}+\dfrac{3}{a^2b}+\dfrac{3}{ab^2}+\dfrac{1}{b^3}=-\dfrac{1}{c^3}\)
=>\(\dfrac{1}{a^3}+\dfrac{1}{b^3}+\dfrac{1}{c^3}=-\dfrac{3}{ab}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)=-\dfrac{3}{ab}.\left(-\dfrac{1}{c}\right)=\dfrac{3}{abc}\)
=> Đpcm.
Bài 17: Cho a, b, c là 3 số thực khác 0, thỏa mãn điều kiện : \(a+b\ne-c\) và \(\dfrac{a+b-c}{c}\)=\(\dfrac{b+c-a}{a}\)=\(\dfrac{c+a-b}{b}\). Tính giá trị biểu thức P=\(\left(1+\dfrac{b}{a}\right)\)x\(\left(1+\dfrac{a}{c}\right)\)x\(\left(1+\dfrac{c}{b}\right)\)
Áp dụng t/c dtsbn ta có:
\(\dfrac{a+b-c}{c}=\dfrac{b+c-a}{a}=\dfrac{c+a-b}{b}=\dfrac{a+b-c+b+c-a+c+a-b}{c+a+b}=\dfrac{a+b+c}{a+b+c}=1\)
\(\dfrac{a+b-c}{c}=1\Rightarrow a+b-c=c\Rightarrow a+b=2c\\ \dfrac{b+c-a}{a}=1\Rightarrow b+c-a=a\Rightarrow b+c=2a\\ \dfrac{c+a-b}{b}=1\Rightarrow c+a-b=b\Rightarrow c+a=2b\)
\(\left(1+\dfrac{b}{a}\right)\left(1+\dfrac{a}{c}\right)\left(1+\dfrac{c}{b}\right)\\ =\dfrac{\left(a+b\right)\left(a+c\right)\left(b+c\right)}{abc}\\ =\dfrac{2c.2b.2a}{abc}\\ =\dfrac{8abc}{abc}\\ =8\)