\(\dfrac{2a-9}{a+3}-\dfrac{5a+17}{a+3}-\dfrac{3a}{a+3}\) là số nguyên.
khó quá !!
tìm số nguyên a : \(\dfrac{2a+9}{a+3}-\dfrac{5a+17}{a+3}-\dfrac{3a}{a+3}\) là số nguyên
Có điều kiện a ko b?
Ta có: \(\dfrac{2a+9}{a+3}-\dfrac{5a+17}{a+3}-\dfrac{3a}{a+3}=\dfrac{2a+9-5a+17-3a}{a+3}=\dfrac{-6a-8}{a+3}\)
\(=\dfrac{-6a-18+10}{a+3}=\dfrac{-6\left(a+3\right)+10}{a+3}=\dfrac{-6\left(a+3\right)}{a+3}+\dfrac{10}{a+3}=-6+\dfrac{10}{a+3}\)
Để \(\dfrac{2a+9}{a+3}-\dfrac{5a+17}{a+3}-\dfrac{3a}{a+3}\) là số nguyên
\(\Leftrightarrow\left(a+3\right)\in U\left(10\right)=\left\{-10;-5;-2;-1;1;2;5;10\right\}\)
\(\Leftrightarrow a\in\left\{-13;-8;-5;-4;-2;-1;2;7\right\}\)
a) Chứng minh rằng: \(\dfrac{1}{6}< \dfrac{1}{5^2}+\dfrac{1}{6^2}+\dfrac{1}{7^2}+...+\dfrac{1}{100^2}< \dfrac{1}{4}\)
b) Tìm số nguyên a để: \(\dfrac{2a+9}{a+3}+\dfrac{5a+17}{a+3}-\dfrac{3a}{a+3}\) là số nguyên.
Bài 1 Tìm số nguyên a để
\(^{\dfrac{2a+9}{a+3}}\)+\(\dfrac{5a+17}{a_{ }+3}\)-\(\dfrac{3a}{a+3}\)là số nguyên
Đặt :
\(A=\dfrac{2a+9}{a+3}+\dfrac{5a+17}{a+3}-\dfrac{3a}{a+3}\)
\(=\dfrac{2a+9+5a+19-3a}{a+3}\)
\(=\dfrac{-6a-8}{a+3}\)
\(\dfrac{-6a+18-10}{a+3}=\dfrac{10}{a+3}-\dfrac{6\left(a+3\right)}{a+3}=\dfrac{10}{a+3}-6\)
\(A\in Z\Leftrightarrow\dfrac{10}{a+3}\in Z\)
\(\Leftrightarrow a+3⋮10\)
\(\Leftrightarrow a+3\inƯ\left(10\right)\)
Lập bảng :v
Tìm a thuộc Z để biểu thức sau có giá trị nguyên
N=\(\dfrac{2a+9}{a+3}\) +\(\dfrac{5a+17}{a+3}\) +\(\dfrac{-3a}{a+3}\) +\(\dfrac{-4a-23}{a+3}\)
Câu 1:Tìm xEN biết
\(\dfrac{1}{5}+\dfrac{2}{30}+\dfrac{121}{165}\le x\le\dfrac{1}{2}+\dfrac{156}{72}+\dfrac{1}{3}\)
Câu 2:Tìm x để biểu thức sau có giá trị là số tự nhiên
\(N=\dfrac{2a+9}{a+3}+\dfrac{5a+17}{a+3}+\dfrac{-3a}{a+3}+\dfrac{-4a-23}{a+3}\)
\(1)\dfrac{1}{5}+\dfrac{2}{30}+\dfrac{121}{156}\le x\le\dfrac{1}{2}+\dfrac{156}{72}+\dfrac{1}{3}\)
\(\dfrac{156}{780}+\dfrac{26}{780}+\dfrac{605}{780}\le x\le\dfrac{3}{6}+\dfrac{13}{6}+\dfrac{2}{6}\)
\(\dfrac{787}{780}\le x\le2\)
\(\Rightarrow x\in\left\{2\right\}\)
Câu 2:
\(N=\dfrac{2a+9+5a+17-3a-4a-23}{a+3}=\dfrac{3}{a+3}\)
Để N là số tự nhiên thì \(\left\{{}\begin{matrix}a>-3\\a+3\in\left\{1;-1;3;-3\right\}\end{matrix}\right.\Leftrightarrow a\in\left\{-2;0\right\}\)
\(\dfrac{5a+3b}{3a+b+2c}\)+\(\dfrac{5b+3c}{3b+c+2a}\)+\(\dfrac{5c+3a}{3c+a+2b}\)\(\ge4\) a,b,c là độ 3 cạnh tam giác
Với giá trị nào của a để các b.thức sau có giá trị = 2:
a) \(\dfrac{3a-1}{3a+1}\) + \(\dfrac{a-3}{a+3}\)
b) \(\dfrac{2a-9}{2a-5}\) + \(\dfrac{3a}{3a-2}\)
c) \(\dfrac{10}{3}\) - \(\dfrac{3a-1}{4a+12}\) - \(\dfrac{7a+2}{6a+18}\)
Bài 1 Tìm số nguyên a để
\(\dfrac{2a+9}{a+3}\) + \(\dfrac{5a+17}{a+3}\)- \(\dfrac{3a}{a+3}\)là số nguyên
Bài 2 Tìm x
\(\dfrac{x+2}{327}\)+\(\dfrac{x+3}{326}\)+\(\dfrac{x+4}{325}\)+\(\dfrac{x+5}{324}\)+\(\dfrac{x+349}{5}\)=0
Bài 2:
\(\left(\dfrac{x+2}{327}+1\right)+\left(\dfrac{x+3}{326}+1\right)+\left(\dfrac{x+4}{325}+1\right)+\left(\dfrac{x+5}{324}\right)+\left(\dfrac{x+349}{5}-4\right)=0\)
\(\dfrac{x+329}{327}+\dfrac{x+329}{326}+\dfrac{x+329}{325}+\dfrac{x+329}{324}+\dfrac{x+329}{5}=0\)
\(\left(x+329\right)\left(\dfrac{1}{327}+\dfrac{1}{326}+\dfrac{1}{325}+\dfrac{1}{324}+\dfrac{1}{5}\right)=0\)
\(\Rightarrow x+329=0\)
\(\Rightarrow x=-329\)
a \(\dfrac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+\sqrt{16}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
b \(\sqrt{\dfrac{2a}{3}}.\sqrt{\dfrac{3a}{8}}\) với a>0
c \(\sqrt{5a.45a}-3a\) với a<0
a: \(\dfrac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+\sqrt{16}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(=\dfrac{\sqrt{2}+\sqrt{3}+\sqrt{4}+\sqrt{4}+\sqrt{6}+\sqrt{8}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(=1+\sqrt{2}\)
b: \(\sqrt{\dfrac{2a}{3}}\cdot\sqrt{\dfrac{3a}{8}}=\sqrt{\dfrac{6a^2}{24}}=\sqrt{\dfrac{a^2}{4}}=\dfrac{a}{2}\)
c: \(\sqrt{5a\cdot45a}-3a=-15a-3a=-18a\)