Tìm x: \(\dfrac{1}{x^2+9x+20}+\dfrac{1}{x^2+11x+30}+\dfrac{1}{x^2+13x+42}=\dfrac{1}{18}\)
giải phương trình\(\dfrac{1}{x^2+9x+20}+\dfrac{1}{x^2+11x+30}+\dfrac{1}{x^2+13x+42}=\dfrac{1}{18}\)
$ĐKXĐ:x \neq -4;-5;-6;-7$
$pt⇔\dfrac{1}{x^2+4x+5x+20}+\dfrac{1}{x^2+5x+6x+30}+\dfrac{1}{x^2+6x+7x+42}=\dfrac{1}{18}$
$⇔\dfrac{1}{(x+4)(x+5)}+\dfrac{1}{(x+5)(x+6)}+\dfrac{1}{(x+6)(x+7)}=\dfrac{1}{18}$
$⇔\dfrac{1}{x+4}-\dfrac{1}{x+5}+\dfrac{1}{x+5}-\dfrac{1}{x+6}+\dfrac{1}{x+6}-\dfrac{1}{x+7}=\dfrac{1}{18}$
$⇔\dfrac{1}{x+4}-\dfrac{1}{x+7}=\dfrac{1}{18}$
$⇔\dfrac{3}{(x+4)(x+7)}=\dfrac{1}{18}$
$⇔x^2+11x+28=54$
$⇔x^2+11x-26=0$
$⇔x^2-2x+13x-26=0$
$⇔(x-2)(x+13)=0$
$⇔$ \(\left[{}\begin{matrix}x=2\\x=-13\end{matrix}\right.\)(t/m)
Vậy phương trình đã cho có tập nghiệm $S=(2;-13)$
Giải PT sau: \(\dfrac{1}{x^2+9x+20}+\dfrac{1}{x^2+11x+30}+\dfrac{1}{x^2+13x+42}=\dfrac{1}{18}\)
Ta có:
\(x^2+9x+2x=\left(x+4\right)\left(x+5\right)\)
\(x^2+11x+30=\left(x+6\right)\left(x+5\right)\)
\(x^2+13x+42=\left(x+6\right)\left(x+7\right)\)
ĐK: \(\left\{{}\begin{matrix}x\ne-4\\x\ne-5\\x\ne-6\\x\ne-7\end{matrix}\right.\)
pt \(\Leftrightarrow\dfrac{1}{\left(x+4\right)\left(x+5\right)}+\dfrac{1}{\left(x+5\right)\left(x+6\right)}+\dfrac{1}{\left(x+6\right)\left(x+7\right)}=\dfrac{1}{18}\)
\(\Leftrightarrow\dfrac{1}{x+4}-\dfrac{1}{x+5}+\dfrac{1}{x+5}-\dfrac{1}{x+6}+\dfrac{1}{x+6}-\dfrac{1}{x+7}=\dfrac{1}{18}\)
\(\Leftrightarrow\dfrac{1}{x+4}-\dfrac{1}{x+7}=\dfrac{1}{18}\)
\(\Leftrightarrow\dfrac{18\left(x+7\right)}{18\left(x+4\right)\left(x+7\right)}-\dfrac{18\left(x+4\right)}{18\left(x+4\right)\left(x+7\right)}=\dfrac{\left(x+4\right)\left(x+7\right)}{18\left(x+4\right)\left(x+7\right)}\)
\(\Rightarrow18\left(x+7\right)-18\left(x+4\right)=\left(x+4\right)\left(x+7\right)\)
\(\Leftrightarrow\left(x+13\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+13=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-13\\x=2\end{matrix}\right.\) (tm)
Tìm x, biết
\(d.\dfrac{1}{x^2+9x+20}+\dfrac{1}{x^{2^{ }}+11x+30}+\dfrac{1}{x^2+13x+42}=\dfrac{1}{18}\)
\(e.\dfrac{x-241}{17}+\dfrac{x-220}{19}+\dfrac{x-195}{21}+\dfrac{x-166}{23}=10\)
d: ĐKXĐ: x<>-4; x<>-5; x<>-6; x<>-7
\(PT\Leftrightarrow\dfrac{1}{x+4}-\dfrac{1}{x+5}+\dfrac{1}{x+5}-\dfrac{1}{x+6}+\dfrac{1}{x+6}-\dfrac{1}{x+7}=\dfrac{1}{18}\)
=>\(\dfrac{1}{x+4}-\dfrac{1}{x+7}=\dfrac{1}{18}\)
=>\(\dfrac{x+7-x-4}{\left(x+4\right)\left(x+7\right)}=\dfrac{1}{18}\)
=>x^2+11x+28=54
=>x^2+11x-26=0
=>(x+13)(x-2)=0
=>x=2 hoặc x=-13
e: \(\dfrac{x-241}{17}+\dfrac{x-220}{19}+\dfrac{x-195}{21}+\dfrac{x-166}{23}=10\)
\(\Leftrightarrow\left(\dfrac{x-241}{17}-1\right)+\left(\dfrac{x-220}{19}-2\right)+\left(\dfrac{x-195}{21}-3\right)+\left(\dfrac{x-166}{23}-4\right)=0\)
=>x-258=0
=>x=258
Tìm x : \(\dfrac{1}{x^2+9x+20}+\dfrac{1}{x^2+11x+30}+\dfrac{1}{x^2+13x+42}=\dfrac{1}{18}\)
\(\dfrac{1}{x^2+9x+20}+\dfrac{1}{x^2+11x+30}+\dfrac{1}{x^2+13x+42}=\dfrac{1}{18}\) (ĐKXĐ: \(x\notin\left\{-4;-5;-6;-7\right\}\))
<=> \(\dfrac{1}{\left(x+4\right)\left(x+5\right)}+\dfrac{1}{\left(x+5\right)\left(x+6\right)}+\dfrac{1}{\left(x+6\right)\left(x+7\right)}-\dfrac{1}{18}=0\)
<=> \(\dfrac{1}{x+4}-\dfrac{1}{x+5}+\dfrac{1}{x+5}-\dfrac{1}{x+6}+\dfrac{1}{x+6}-\dfrac{1}{x+7}-\dfrac{1}{18}=0\)
<=> \(\dfrac{1}{x+4}-\dfrac{1}{x+7}-\dfrac{1}{18}=0\)
<=> \(\dfrac{18\left(x+7\right)}{18\left(x+4\right)\left(x+7\right)}-\dfrac{18\left(x+4\right)}{18\left(x+4\right)\left(x+7\right)}-\dfrac{\left(x+4\right)\left(x+7\right)}{18\left(x+4\right)\left(x+7\right)}=0\)
=> \(18\left(x+7\right)-18\left(x+4\right)-\left(x+4\right)\left(x+7\right)=0\)
<=> 18x + 18.7 - 18x - 18.4 - x2 - 7x - 4x - 28 = 0
<=> - x2 - 11x + 26 = 0
<=> (x - 2)(x + 13) = 0
<=> \(\left[{}\begin{matrix}x-2=0\\x+13=0\end{matrix}\right.\)
<=> \(\left[{}\begin{matrix}x=2\\x=-13\end{matrix}\right.\) (nhận)
Vậy S = {-13; 2}
Giải phương trình \(\dfrac{1}{x^{2^{ }}+9x+20}+\dfrac{1}{x^{2^{ }}+11x+30}+\dfrac{1}{x^{2^{ }}+13x+42}=\dfrac{1}{18}\)
ĐKXĐ: \(x\ne-4;-5;-6;-7\)
\(\dfrac{1}{\left(x+4\right)\left(x+5\right)}+\dfrac{1}{\left(x+5\right)\left(x+6\right)}+\dfrac{1}{\left(x+6\right)\left(x+7\right)}=\dfrac{1}{18}\)
\(\Leftrightarrow\dfrac{1}{x+4}-\dfrac{1}{x+5}+\dfrac{1}{x+5}-\dfrac{1}{x+6}+\dfrac{1}{x+6}-\dfrac{1}{x+7}=\dfrac{1}{18}\)
\(\Leftrightarrow\dfrac{1}{x+4}-\dfrac{1}{x+7}=\dfrac{1}{18}\)
\(\Leftrightarrow\dfrac{3}{\left(x+4\right)\left(x+7\right)}=\dfrac{1}{18}\)
\(\Leftrightarrow x^2+11x-26=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+13\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=2\\x=-13\end{matrix}\right.\)
Giải phương trình
\(\dfrac{1}{x^2+9x+20}+\dfrac{1}{x^2+11x+30}+\dfrac{1}{x^2+13x+42}=\dfrac{1}{18}\)
\(\dfrac{1}{x^2+9x+20}+\dfrac{1}{x^2+11x+30}+\dfrac{1}{x^2+13x+42}=\dfrac{1}{18}\) ĐKXĐ:x\(\ne\)-4,-5,-6,-7
\(\Leftrightarrow\)\(\dfrac{1}{x^2+4x+5x+20}+\dfrac{1}{x^2+5x+6x+30}+\dfrac{1}{x^2+6x+7x+42}=\dfrac{1}{18}\)
\(\Leftrightarrow\)\(\dfrac{1}{x.\left(x+4\right)+5.\left(x+4\right)}+\dfrac{1}{x.\left(x+5\right)+6.\left(x+5\right)}+\dfrac{1}{x.\left(x+6\right)+7.\left(x+6\right)}=\dfrac{1}{18}\)
\(\Leftrightarrow\)\(\dfrac{1}{\left(x+4\right).\left(x+5\right)}+\dfrac{1}{\left(x+5\right).\left(x+6\right)}+\dfrac{1}{\left(x+6\right).\left(x+7\right)}=\dfrac{1}{18}\)
\(\Leftrightarrow\)\(\dfrac{1}{x+4}-\dfrac{1}{x+5}+\dfrac{1}{x+5}-\dfrac{1}{x+6}+\dfrac{1}{x+6}-\dfrac{1}{x+7}=\dfrac{1}{18}\)
\(\Leftrightarrow\)\(\dfrac{1}{x+4}-\dfrac{1}{x+7}=\dfrac{1}{18}\)
\(\Leftrightarrow\)\(\dfrac{x+7-x-4}{\left(x+4\right).\left(x+7\right)}=\dfrac{1}{18}\)
\(\Leftrightarrow\)\(\dfrac{3}{\left(x+4\right).\left(x+7\right)}=\dfrac{3}{54}\)
\(\Leftrightarrow\)(x+4).(x+7)=54
\(\Leftrightarrow\)x2+11x+28=54
\(\Leftrightarrow\)x2+11x-26=0
\(\Leftrightarrow\)x2+13x-2x-26=0
\(\Leftrightarrow\)x.(x+13)-2.(x+13)=0
\(\Leftrightarrow\)(x-2).(x+13)=0
\(\Leftrightarrow\)\(\left[{}\begin{matrix}x-2=0\\x+13=0\end{matrix}\right.\)\(\Leftrightarrow\)\(\left[{}\begin{matrix}x=2\left(TM\right)\\x=-13\left(TM\right)\end{matrix}\right.\)
Vậy tập nghiệm của pt trên là S={-13;2}
ĐKXĐ: \(x\ne-4;x\ne-5;x\ne-6;x\ne-7\)
\(\Leftrightarrow\dfrac{1}{\left(x+4\right)\left(x+5\right)}+\dfrac{1}{\left(x+5\right)\left(x+6\right)}+\dfrac{1}{\left(x+6\right)\left(x+7\right)}=\dfrac{1}{18}\)
\(\Leftrightarrow\dfrac{1}{x+4}-\dfrac{1}{x+5}+\dfrac{1}{x+5}-\dfrac{1}{x+6}+\dfrac{1}{x+6}-\dfrac{1}{x+7}=\dfrac{1}{18}\)
\(\Leftrightarrow\dfrac{1}{x+4}-\dfrac{1}{x+7}=\dfrac{1}{18}\)
\(\Leftrightarrow\dfrac{3}{\left(x+4\right)\left(x+7\right)}=\dfrac{1}{18}\)
\(\Leftrightarrow54=x^2+11x+28\)
\(\Leftrightarrow x^2+11x-26=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+13\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+13=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\left(TM\right)\\x=-13\left(TM\right)\end{matrix}\right.\)
giải phương trình
\(\dfrac{1}{x^2+9x+20}+\dfrac{1}{x^2+11x+30}+\dfrac{1}{x^2+13x+42}=\dfrac{1}{18}\)
\(pt\Leftrightarrow\dfrac{1}{\left(x+4\right)\left(x+5\right)}+\dfrac{1}{\left(x+5\right)\left(x+6\right)}+\dfrac{1}{\left(x+6\right)\left(x+7\right)}=\dfrac{1}{18}\)
Giải phương trình : \(\dfrac{1}{x^2+9x+20}+\dfrac{1}{x^2+11x+30}+\dfrac{1}{x^2+13x+42}=\dfrac{1}{18}\)
ĐKXĐ: \(x\ne-4;-5;-6;-7\)
\(\dfrac{1}{\left(x+4\right)\left(x+5\right)}+\dfrac{1}{\left(x+5\right)\left(x+6\right)}+\dfrac{1}{\left(x+6\right)\left(x+7\right)}=\dfrac{1}{18}\)
\(\Leftrightarrow\dfrac{1}{x+4}-\dfrac{1}{x+5}+\dfrac{1}{x+5}-\dfrac{1}{x+6}+\dfrac{1}{x+6}-\dfrac{1}{x+7}=\dfrac{1}{18}\)
\(\Leftrightarrow\dfrac{1}{x+4}-\dfrac{1}{x+7}=\dfrac{1}{18}\)
\(\Leftrightarrow\dfrac{3}{\left(x+4\right)\left(x+7\right)}=\dfrac{1}{18}\)
\(\Leftrightarrow54=x^2+11x+28\)
\(\Leftrightarrow x^2+11x-26=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+13\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-13\end{matrix}\right.\)
Giải phương trình
\(\dfrac{1}{x^2+9x+20}+\dfrac{1}{x^2+11x+30}+\dfrac{1}{x^2+13x+42}=\dfrac{1}{18}\)
ĐKXĐ: x khác -4; -5 ; -6 ; -7
\(\dfrac{1}{x^2+9x+20}+\dfrac{1}{x^2+11x+30}+\dfrac{1}{x^2+13x+42}=\dfrac{1}{18}\)\(\Leftrightarrow\dfrac{1}{\left(x+4\right)\left(x+5\right)}+\dfrac{1}{\left(x+5\right)\left(x+6\right)}+\dfrac{1}{\left(x+6\right)\left(x+7\right)}=\dfrac{1}{18}\)
\(\Leftrightarrow\dfrac{1}{x+4}-\dfrac{1}{x+5}+\dfrac{1}{x+5}-\dfrac{1}{x+6}+\dfrac{1}{x+6}-\dfrac{1}{x+7}=\dfrac{1}{18}\)
\(\Leftrightarrow\dfrac{1}{x+4}-\dfrac{1}{x+7}=\dfrac{1}{18}\)
\(\Leftrightarrow\dfrac{x+7-x-4}{\left(x+4\right)\left(x+7\right)}=\dfrac{1}{18}\)
\(\Leftrightarrow\dfrac{3}{\left(x+4\right)\left(x+7\right)}=\dfrac{1}{18}\)
\(\Leftrightarrow54=x^2+11x+28\)
\(\Leftrightarrow x^2+11x-26=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+13\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-13\end{matrix}\right.\)
Vậy.........
\(\dfrac{1}{x^2+9x+20}+\dfrac{1}{x^2+11x+30}+\dfrac{1}{x^2+13x+42}=\dfrac{1}{18}\left(đkxđ:x\ne-4;-5;-6;-7\right)\)
\(\Leftrightarrow\dfrac{1}{\left(x+4\right)\left(x+5\right)}+\dfrac{1}{\left(x+5\right)\left(x+6\right)}+\dfrac{1}{\left(x+6\right)\left(x+7\right)}=\dfrac{1}{18}\)
\(\Leftrightarrow\dfrac{1}{x+4}-\dfrac{1}{x+5}+\dfrac{1}{x+5}-\dfrac{1}{x+6}+\dfrac{1}{x+6}-\dfrac{1}{x+7}=\dfrac{1}{18}\)
\(\Leftrightarrow\dfrac{1}{x+4}-\dfrac{1}{x+7}=\dfrac{1}{18}\)
\(\Leftrightarrow\dfrac{3}{\left(x+4\right)\left(x+7\right)}=\dfrac{1}{18}\)
\(\Leftrightarrow x^2+11x+28=54\)
\(\Leftrightarrow x^2+11x-26=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\left(tm\right)\\x=-13\left(tm\right)\end{matrix}\right.\)