tìm m để hệ pt có nghiệm
\(\left\{{}\begin{matrix}x=y^2-y+m\\y=x^2-x+m\end{matrix}\right.\)
\(\left\{{}\begin{matrix}3x-y=2\\9x-my=m\end{matrix}\right.\)
tìm m để hệ pt có nghiệm x+y=2
\(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{-m+6}{m-3}\\x=\dfrac{m}{3\left(m-3\right)}\end{matrix}\right.\)
Để HPT có nghiệm thì m ≠ 3
Có: x + y = 2
\(\Leftrightarrow\dfrac{-m+6}{m-3}+\dfrac{m}{3\left(m-3\right)}=2\)
\(\Leftrightarrow\dfrac{-3m+18+m}{3\left(m-3\right)}=2\)
\(\Leftrightarrow\dfrac{-2m+18}{3\left(m-3\right)}=2\)
\(\Leftrightarrow\dfrac{-m+9}{3\left(m-3\right)}=1\)
<=> -m + 9 = 3m - 9
<=> -4m + 18 = 0
\(\Leftrightarrow m=\dfrac{18}{4}\) (t/m)
1)Cho hệ pt : \(\left\{{}\begin{matrix}2x+3y=m\\-5x+y=-1\end{matrix}\right.\)
Tìm m để hệ pt có nghiệm x>0 ,y>0
2) Cho pt\(mx^2-2\left(m-1\right)x+m-1=0\) (m là tham số)
Tìm m để pt có nghiệm kép ,có nghiệm duy nhất
\(2)mx^2-2\left(m-1\right)x+m-1=0\)
Để pt có nghiệm kép \(\Leftrightarrow\left\{{}\begin{matrix}a\ne0\\\Delta=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\ne0\\\left[-2\left(m-1\right)\right]^2-4m\left(m-1\right)=0\end{matrix}\right.\)
\(\Leftrightarrow4\left(m^2-2m+1\right)-4m^2+4m=0\)
\(\Leftrightarrow4m^2-8m+4-4m^2+4m=0\)
\(\Leftrightarrow-4m+4=0\)
\(\Leftrightarrow m=1\)
Vậy để pt trên có nghiệm kép thì \(\left\{{}\begin{matrix}m\ne0\\m=1\end{matrix}\right.\)
Cho hệ phương trình \(\left\{{}\begin{matrix}\left(m+1\right)x-y=m+1\\x+\left(m-1\right)y=2\end{matrix}\right.\)
Tìm m để hệ pt có nghiệm duy nhất (x;y) thỏa mãn x+y đạt GTNN
=>y=(m+1)x-m-1 và x+(m^2-1)x-m^2+1=2
=>x=2-1+m^2/m^2 và y=(m+1)x-m-1
=>x=(m^2+1)/m^2 và y=(m^3+m^2+m+1-m^3-m^2)/m^2=(m+1)/m^2
x+y=(m^2+m+2)/m^2
Để x+y min thì m^2+m+2 min
=>m^2+m+1/4+7/4 min
=>(m+1/2)^2+7/4min
=>m=-1/2
\(\left\{{}\begin{matrix}x^3=y^2+7x^2-mx\\y^3=x^2+7y^2-my\end{matrix}\right.\) <=> \(\left[{}\begin{matrix}x-y=0\\x^2+y^2+xy-6\left(x-y\right)+m=0\end{matrix}\right.\)
tìm m để pt có đúng 1 nghiệm. Từ x-y=0 Em tìm dc 1 nghiệm và m<16 rồi còn pt dưới thì ch bt làm sao ạ mn giúp em với em cảm ơn nhiêuuuuuu
Trừ vế cho vế:
\(\Rightarrow x^3-y^3=6\left(x^2-y^2\right)-m\left(x-y\right)\)
\(\Leftrightarrow\left(x-y\right)\left(x^2+xy+y^2-6\left(x+y\right)+m\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=y\\x^2+xy+y^2-6\left(x+y\right)+m=0\end{matrix}\right.\)
- Với \(x=y\Rightarrow x^3=8x^2-mx\Leftrightarrow x\left(x^2-8x+m\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x^2-8x+m=0\end{matrix}\right.\)
Do đó hệ luôn luôn có nghiệm \(\left(x;y\right)=\left(0;0\right)\) với mọi m
Để hệ chỉ có 1 nghiệm thì \(x^2-8x+m=0\) vô nghiệm \(\Rightarrow m>16\)
Khi đó, xét pt \(x^2+xy+y^2-6\left(x+y\right)+m=0\) (1)
Ta có:
\(x^2+xy+y^2-6\left(x+y\right)+m>\dfrac{3}{4}\left(x+y\right)^2-6\left(x+y\right)+16=\dfrac{3}{4}\left(x+y-4\right)^2+4>0\)
\(\Rightarrow\) (1) vô nghiệm hay hệ có đúng 1 nghiệm \(\left(x;y\right)=\left(0;0\right)\)
Vậy \(m>16\) thì hệ có 1 nghiệm
tìm m để hệ pt có nghiệm
\(\left\{{}\begin{matrix}\sqrt{1+x}+\sqrt{y-2}=\sqrt{m}\\\sqrt{1+y}+\sqrt{x-2}=\sqrt{m}\end{matrix}\right.\)
Lời giải: ĐK: $x,y\geq 2$
HPT \(\Rightarrow \sqrt{x+1}-\sqrt{y+1}+(\sqrt{y-2}-\sqrt{x-2})=0\)
\(\Leftrightarrow (x-y).\left[\frac{1}{\sqrt{x+1}+\sqrt{y+1}}-\frac{1}{\sqrt{y-2}+\sqrt{x-2}}\right]=0\)
\(\Leftrightarrow x-y=0\) (do dễ thấy biểu thức trong ngoặc vuông luôn âm)
\(\Leftrightarrow x=y\)
Khi đó: $\sqrt{x+1}+\sqrt{x-2}=\sqrt{m}$
$\Leftrightarrow 2x-1+2\sqrt{(x+1)(x-2)}=m$
Để hpt có nghiệm thì pt trên có nghiệm
$\Leftrightarrow m\geq \min (2x-1+2\sqrt{(x+1)(x-2)})$
$\Leftrightarrow m\geq 2.2-1+2.0=3$
Vậy $m\geq 3$
Giải phương trình:
\(x^3+x+6=2\left(x+1\right)\sqrt{3+2x-x^2}\)
Giải hệ \(\left\{{}\begin{matrix}\left|x\right|+y=-1\\x^2+y^2=m\end{matrix}\right.\). Tìm m để hệ pt có nghiệm
cho hệ pt \(\left\{{}\begin{matrix}x^3-ax=y\\y^3-ay=x\end{matrix}\right.\)
a, tìm m để hệ pt có nghiệm
b, tìm m để hệ pt có 5 nghiệm
\(\left\{{}\begin{matrix}mx+4y=9\\x+my=8\end{matrix}\right.\)
tìm m để hệ pt có nghiệm x + y =2
tìm m để hệ pt sau có nghiệm \(\left\{{}\begin{matrix}\sqrt{7x+y}+\sqrt{x+y}=6\\\sqrt{x+y}-y+x=m\end{matrix}\right.\)
Đặt \(\left\{{}\begin{matrix}\sqrt{7x+y}=a\ge0\\\sqrt{x+y}=b\ge0\end{matrix}\right.\) \(\Rightarrow x-y=\dfrac{a^2-4b^2}{3}\)
Hệ trở thành:
\(\left\{{}\begin{matrix}a+b=6\\b+\dfrac{a^2-4b^2}{3}=m\end{matrix}\right.\)
\(\Rightarrow6-a+\dfrac{a^2-4\left(6-a\right)^2}{3}=m\)
\(\Leftrightarrow-a^2+15a-42=m\)
Với \(0\le a\le6\Rightarrow-42\le-a^2+15a-42\le12\)
\(\Rightarrow-42\le m\le12\)