lấy pt 1-pt 2 ta có
(x-y)=(y^2-x^2)-y+x
(x-y)(1-x-y+1)=0
=>x=y or x+y=2 thay vào hệ rồi giải tiếp
Lời giải:
Lấy PT $(1)$ trừ PT $(2)$ thu được:
$x^2-y^2=0$
$\Leftrightarrow x=y$ hoặc $x=-y$
Nếu $x=y$ thì HPT \(\Leftrightarrow \left\{\begin{matrix} x=y\\ x=x^2-x+m\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x=y\\ x^2-2x+m=0\end{matrix}\right.\)
Để hpt có nghiệm thì $x^2-2x+m=0$ có nghiệm
$\Leftrightarrow \Delta'=1-m\geq 0$
$\Leftrightarrow m\leq 1$
Nếu $x=-y$ thì HPT \(\Leftrightarrow \left\{\begin{matrix} x=-y\\ x=x^2+x+m\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x=-y\\ x^2+m=0\end{matrix}\right.\)
Để hpt có nghiệm $\Leftrightarrow x^2+m=0$ có nghiệm
$\Leftrightarrow \Delta=-m\geq 0\Leftrightarrow m\leq 0$
Kết hợp cả 2 TH ta thấy $m\leq 0$ thì hpt có nghiệm.