Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Minh Hiếu
Xem chi tiết
Akai Haruma
28 tháng 10 2021 lúc 17:53

Vì bài dài nên mình sẽ tách ra nhé.

1a. Ta có:

$x^2+y^2+z^2=(x+y+z)^2-2(xy+yz+xz)=-2(xy+yz+xz)$

$x^3+y^3+z^3=(x+y+z)^3-3(x+y)(y+z)(x+z)=-3(x+y)(y+z)(x+z)$

$=-3(-z)(-x)(-y)=3xyz$

$\Rightarrow \text{VT}=-30xyz(xy+yz+xz)(1)$

------------------------

$x^5+y^5=(x^2+y^2)(x^3+y^3)-x^2y^2(x+y)$

$=[(x+y)^2-2xy][(x+y)^3-3xy(x+y)]-x^2y^2(x+y)$

$=(z^2-2xy)(-z^3+3xyz)+x^2y^2z$

$=-z^5+3xyz^3+2xyz^3-6x^2y^2z+x^2y^2z$

$=-z^5+5xyz^3-5x^2y^2z$

$\Rightarrow 6(x^5+y^5+z^5)=6(5xyz^3-5x^2y^2z)$

$=30xyz(z^2-xy)=30xyz[z(-x-y)-xy]=-30xyz(xy+yz+xz)(2)$

Từ $(1);(2)$ ta có đpcm.

Akai Haruma
28 tháng 10 2021 lúc 17:58

1b.

$x^4+y^4=(x^2+y^2)^2-2x^2y^2=[(x+y)^2-2xy]^2-2x^2y^2$

$=(z^2-2xy)^2-2x^2y^2=z^4+2x^2y^2-4xyz^2$

$x^3+y^3=(x+y)^3-3xy(x+y)=-z^3+3xyz$

Do đó:

$x^7+y^7=(x^4+y^4)(x^3+y^3)-x^3y^3(x+y)$

$=(z^4+2x^2y^2-4xyz^2)(-z^3+3xyz)+x^3y^3z$

$=7x^3y^3z-14x^2y^2z^3+7xyz^5-z^7$

$\Rightarrow \text{VT}=7x^3y^3z-14x^2y^2z^3+7xyz^5$

$=7xyz(x^2y^2-2xyz^2+z^4)$

$=7xyz(xy-z^2)$

$=7xyz[xy+z(x+y)]^2=7xyz(xy+yz+xz)^2$

$=7xyz[x^2y^2+y^2z^2+z^2x^2+2xyz(x+y+z)]$

$=7xyz(x^2y^2+y^2z^2+z^2x^2)$ (đpcm)

 

 

Akai Haruma
28 tháng 10 2021 lúc 18:04

1c. Sử dụng kq phần a,b:

\(10(x^7+y^7+z^7)=70xyz(xy+yz+xz)^2\)

\(=-35xyz(xy+yz+xz).-2(xy+yz+xz)=-35xyz(x+y+z)(x^2+y^2+z^2)\)

\(=\frac{7}{6}.-30xyz(xy+yz+xz)(x^2+y^2+z^2)=\frac{7}{6}.6(x^5+y^5+z^5).(x^2+y^2+z^2)\)

\(=7(x^5+y^5+z^5)(x^2+y^2+z^5)\)

(đpcm)

1d. Áp dụng kq phần a
$6(x^5+y^5+z^5)=-30xyz(xy+y+xz)=15xyz.-2(xy+yz+xz)=15xyz(x^2+y^2+z^2)$

$\Rightarrow 2(x^5+y^5+z^5)=5xyz(x^2+y^2+z^2)$ (đpcm)

 

harumi05
Xem chi tiết
Trần Trọng Quân
14 tháng 8 2018 lúc 8:00

B = (x-1)(2x+1) - (x2-2x-1)

B = 2x2+x-2x-1-x2-2x-1 = x2-3x-2

B = x2+x-4x-2 = x(x+1) - 4(x+1)

B = (x+1)(x-4)

Lê Thị Hồng Vân
14 tháng 8 2018 lúc 14:02

\(A=2x\left(x-2\right)-x\left(2x-3\right)\\ =2x^2-4x-2x^2+3x\\ =-x\\ B=\left(x-1\right)\left(2x+1\right)-\left(x^2-2x-1\right)\\ =x\left(2x+1\right)-\left(2x+1\right)-x^2+2x+1\\ =2x^2+x-2x-1-x^2+2x+1\\ =x^2+x\\ C=\left(x+y\right)\left(x^2-xy+y^2\right)-x^3\\ =x\left(x^2-xy+y^2\right)+y\left(x^2-xy+y^2\right)-x^3\\ =x^3-x^2y+xy^2+x^2y-xy^2+y^3-x^3\\ =y^3\)

\(D=\left(12x-3\right)\left(x+4\right)-x\left(2x+7\right)\\ =x\left(12x-3\right)+4\left(12x-3\right)-2x^2-7x\\ =12x^2-3x+48x-12-2x^2-7x\\ =10x^2+38x-12\\ E=\left(2x+y\right)\left(4x^2-2xy+y^2\right)\\ =2x\left(4x^2-2xy+y^2\right)+y\left(4x^2-2xy+y^2\right)\\ =8x^3-4x^2y+2xy^2+4x^2y-2xy^2+y^3\\ =8x^3+y^3\)

le thi hai yen
13 tháng 8 2018 lúc 23:16

A= 2x2 - 4x - 2x2 + 3x = -x B= 2x2 + x - 2x -1 -x2 + 2x +1 = x2 + x = x[ x + 1 ]

Đỗ Trang
Xem chi tiết
Akai Haruma
20 tháng 11 2018 lúc 0:14

Bài 1:

a) \(3x^2-2x(5+1,5x)+10=3x^2-(10x+3x^2)+10\)

\(=10-10x=10(1-x)\)

b) \(7x(4y-x)+4y(y-7x)-2(2y^2-3,5x)\)

\(=28xy-7x^2+(4y^2-28xy)-(4y^2-7x)\)

\(=-7x^2+7x=7x(1-x)\)

c)

\(\left\{2x-3(x-1)-5[x-4(3-2x)+10]\right\}.(-2x)\)

\(\left\{2x-(3x-3)-5[x-(12-8x)+10]\right\}(-2x)\)

\(=\left\{3-x-5[9x-2]\right\}(-2x)\)

\(=\left\{3-x-45x+10\right\}(-2x)=(13-46x)(-2x)=2x(46x-13)\)

Akai Haruma
20 tháng 11 2018 lúc 0:24

Bài 2:

a) \(3(2x-1)-5(x-3)+6(3x-4)=24\)

\(\Leftrightarrow (6x-3)-(5x-15)+(18x-24)=24\)

\(\Leftrightarrow 19x-12=24\Rightarrow 19x=36\Rightarrow x=\frac{36}{19}\)

b)

\(\Leftrightarrow 2x^2+3(x^2-1)-5x(x+1)=0\)

\(\Leftrightarrow 2x^2+3x^2-3-5x^2-5x=0\)

\(\Leftrightarrow -5x-3=0\Rightarrow x=-\frac{3}{5}\)

\(2x^2+3(x^2-1)=5x(x+1)\)

Akai Haruma
20 tháng 11 2018 lúc 0:27

Bài 2:

c) \(2x(5-3x)+2x(3x-5)-3(x-7)=3\)

\(\Leftrightarrow 2x(5-3x)-2x(5-3x)-3(x-7)=3\)

\(\Leftrightarrow -3(x-7)=3\)

\(\Leftrightarrow x-7=-1\Rightarrow x=6\)

d)

\(3x(x+1)-2x(x+2)=-1-x\)

\(\Leftrightarrow 3x^2+3x-(2x^2+4x)+x+1=0\)

\(\Leftrightarrow x^2+1=0\)

Vô lý vì \(x^2+1\geq 0+1=1>0\) với mọi $x$

Vậy không tồn tại $x$ thỏa mãn.

Nguyễn Văn Đình Lâm
Xem chi tiết
Đào Tiến Đạt
20 tháng 4 2022 lúc 21:37

...

Nguyễn Việt Lâm
23 tháng 4 2022 lúc 11:13

\(y'=7\left(-x^2+3x+7\right)^6.\left(-x^2+3x+7\right)'\)

\(=7\left(-2x+3\right)\left(-x^2+3x+7\right)^6\)

Ga
Xem chi tiết
Thỏ Nghịch Ngợm
Xem chi tiết
White Silver
Xem chi tiết
Lấp La Lấp Lánh
15 tháng 9 2021 lúc 8:22

\(A=4x^2+6x=2x\left(2x+3\right)\)

\(B=\left(2x+3\right)^2-x\left(2x+3\right)=\left(2x+3\right)\left(2x+3-x\right)=\left(2x+3\right)\left(x+3\right)\)

\(C=\left(9x^2-1\right)-\left(3x-1\right)^2=\left(3x-1\right)\left(3x+1\right)-\left(3x-1\right)^2=\left(3x-1\right)\left(3x+1-3x+1\right)=2\left(3x+1\right)\)

\(D=x^3-16x=x\left(x^2-16\right)=x\left(x-4\right)\left(x+4\right)\)

\(E=4x^2-25y^2=\left(2x-5y\right)\left(2x+5y\right)\)

\(G=\left(2x+3\right)^2-\left(2x-3\right)^2=\left(2x+3-2x+3\right)\left(2x+3+3x-3\right)=6.4x=24x\)

Nguyễn Hoàng Minh
15 tháng 9 2021 lúc 8:24

\(A=2x\left(2x+3\right)\\ B=\left(2x+3\right)\left(2x+3-x\right)=\left(2x+3\right)\left(x+3\right)\\ C=\left(3x-1\right)\left(3x+1\right)-\left(3x-1\right)^2\\ =\left(3x-1\right)\left(3x+1-3x+1\right)\\ =2\left(3x-1\right)\\ D=x\left(x^2-16\right)=x\left(x-4\right)\left(x+4\right)\\ E=\left(2x-5y\right)\left(2x+5y\right)\\ G=\left(2x+3-2x+3\right)\left(2x+3+2x-3\right)\\ =24x\)

Hà Thanh Tùng
Xem chi tiết
hattori heiji
17 tháng 10 2017 lúc 22:52

de bai

Hà Thanh Tùng
18 tháng 10 2017 lúc 12:19

tìm x,y

Y
19 tháng 5 2019 lúc 10:00

a) Áp dụng bất đẳng thức \(\left|A\right|+\left|B\right|\ge\left|A+B\right|\) ta có :

\(\left|x+2\right|+\left|x-1\right|=\left|x+2\right|+\left|1-x\right|\)

\(\ge\left|x+2+1-x\right|=3\) (1)

Dấu "=" xảy ra \(\Leftrightarrow\left(x+2\right)\left(1-x\right)\ge0\)

\(\Leftrightarrow-2\le x\le1\)

+ \(\left(y+2\right)^2\ge0\forall y\)

\(\Rightarrow3-\left(y+2\right)^2\le3\) (2)

Dấu "=" xảy ra \(\Leftrightarrow\left(y+2\right)^2=0\Leftrightarrow y=-2\)

Từ (1) và (2) suy ra \(\left|x+2\right|+\left|x+1\right|=3-\left(y+2\right)^2=3\)

\(\Leftrightarrow\left\{{}\begin{matrix}-2\le x\le1\\y=-2\end{matrix}\right.\)

b) \(\left|x-5\right|+\left|1-x\right|\ge\left|x-5+1-x\right|=4\) (3)

Dấu "=" xảy ra \(\Leftrightarrow\left(x-5\right)\left(1-x\right)\ge0\)

\(\Leftrightarrow1\le x\le5\)

+ \(\left|y+1\right|\ge0\forall y\) \(\Rightarrow\left|y+1\right|+3\ge3\)

\(\Rightarrow\frac{12}{\left|y+1\right|+3}\le\frac{12}{3}=4\) (4)

Dấu "=" xảy ra \(\Leftrightarrow\left|y+1\right|=0\Leftrightarrow y=-1\)

Từ (3) và (4) suy ra \(\left|x-5\right|+\left|1-x\right|=\frac{12}{\left|y+1\right|+3}=4\)

\(\Leftrightarrow\left\{{}\begin{matrix}1\le x\le5\\y=-1\end{matrix}\right.\)

Câu c,d lm tương tự

Thầy Cao Đô
Xem chi tiết
HT.Phong (9A5)
19 tháng 10 2023 lúc 10:42

a) \(\left(-12x^{13}y^{15}+6x^{10}y^{14}\right):\left(-3x^{10}y^{14}\right)\)

\(=-12x^{13}y^{15}:-3x^{10}y^{14}+6x^{10}y^{14}:-3x^{10}y^{14}\)

\(=4x^3y-2\)

b) \(\left(x-y\right)\left(x^2-2x+y\right)-x^3+x^2y\)

\(=x^3-2x^2+xy-x^2y+2xy-y^2-x^3+x^2y\)

\(=-2x^2+3xy-y^2\) 

Hồ Ngọc Hà
22 tháng 10 2023 lúc 21:43

a) (-12x^13y^15 + 6x^10y^14):(-3x^10y^14)= 4x^3y-2

b) (x-y)(x^2-2x+y)-x^3+x^2y= 2x^2 + xy + 2xy- y^2

Dương Đức Minh
30 tháng 10 2023 lúc 19:09

6x3y15