Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Chibi Sieu Quay
Xem chi tiết
Chibi Sieu Quay
5 tháng 5 2021 lúc 11:22

tìm cả đk giúp mik vs

Nguyễn Việt Lâm
5 tháng 5 2021 lúc 16:47

ĐKXĐ: \(x>0;x\ne1\)

\(A=\left(\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\dfrac{\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right):\left(\dfrac{2\left(\sqrt{x}+1\right)}{x\left(\sqrt{x}+1\right)}-\dfrac{2-x}{x\left(\sqrt{x}+1\right)}\right)\)

\(=\left(\dfrac{x+2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right):\left(\dfrac{x+2\sqrt{x}}{x\left(\sqrt{x}+1\right)}\right)\)

\(=\dfrac{\left(x+2\sqrt{x}\right).x.\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)\left(x+2\sqrt{x}\right)}=\dfrac{x}{\sqrt{x}-1}\)

b.

\(x=4+2\sqrt{3}=\left(\sqrt{3}+1\right)^2\Rightarrow\sqrt{x}=\sqrt{3}+1\)

\(\Rightarrow A=\dfrac{4+2\sqrt{3}}{\sqrt{3}+1-1}=\dfrac{4+2\sqrt{3}}{\sqrt{3}}=\dfrac{6+4\sqrt{3}}{3}\)

c.

Để \(\sqrt{A}\) xác định \(\Rightarrow\sqrt{x}-1>0\Rightarrow x>1\)

Ta có:

\(\sqrt{A}=\sqrt{\dfrac{x}{\sqrt{x}-1}}=\sqrt{\dfrac{x}{\sqrt{x}-1}-4+4}=\sqrt{\dfrac{\left(\sqrt{x}-2\right)^2}{\sqrt{x}-1}+4}\ge\sqrt{4}=2\)

Dấu "=" xảy ra khi \(\sqrt{x}-2=0\Rightarrow x=4\)

Anh Nguyễn
Xem chi tiết
Minh Hiếu
12 tháng 10 2021 lúc 20:04

\(A=\) \(\dfrac{x+2}{x-5}\)

\(=\dfrac{\left(x-5\right)+7}{x-5}\)

\(=1+\dfrac{7}{x-5}\)

để \(\dfrac{7}{x-5}\) ∈Z thì 7⋮x-5

⇒x-5∈\(\left(^+_-1,^+_-7\right)\)

Còn lại thì bạn tự tính nha

Chóii Changg
Xem chi tiết
Nguyễn Lê Phước Thịnh
23 tháng 8 2021 lúc 21:33

Bài 1:

Để biểu thức nhận giá trị nguyên thì \(3\sqrt{x}+1⋮2\sqrt{x}-1\)

\(\Leftrightarrow6\sqrt{x}+2⋮2\sqrt{x}-1\)

\(\Leftrightarrow2\sqrt{x}-1\in\left\{1;-1;5\right\}\)

\(\Leftrightarrow2\sqrt{x}\in\left\{2;0;6\right\}\)

hay \(x\in\left\{4;0;36\right\}\)

Trần Hiếu Anh
Xem chi tiết
Nguyễn Lê Phước Thịnh
5 tháng 11 2023 lúc 10:37

a: A>0

=>\(x^2-3x>0\)

=>x(x-3)>0

TH1: \(\left\{{}\begin{matrix}x>0\\x-3>0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x>0\\x>3\end{matrix}\right.\)

=>x>3

TH2: \(\left\{{}\begin{matrix}x< 0\\x-3< 0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x< 0\\x< 3\end{matrix}\right.\)

=>x<0

d: Để D<0 thì \(x^2+\dfrac{5}{2}x< 0\)

=>\(x\left(x+\dfrac{5}{2}\right)< 0\)

TH1: \(\left\{{}\begin{matrix}x>0\\x+\dfrac{5}{2}< 0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x>0\\x< -\dfrac{5}{2}\end{matrix}\right.\)

=>Loại

Th2: \(\left\{{}\begin{matrix}x< 0\\x+\dfrac{5}{2}>0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x< 0\\x>-\dfrac{5}{2}\end{matrix}\right.\)

=>\(-\dfrac{5}{2}< x< 0\)

e: ĐKXĐ: x<>2

Để E<0 thì \(\dfrac{x-3}{x-2}< 0\)

TH1: \(\left\{{}\begin{matrix}x-3>=0\\x-2< 0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x>=3\\x< 2\end{matrix}\right.\)

=>Loại

TH2: \(\left\{{}\begin{matrix}x-3< =0\\x-2>0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x< =3\\x>2\end{matrix}\right.\)

=>2<x<=3

g: Để G<0 thì \(\left(2x-1\right)\left(3-2x\right)< 0\)

=>\(\left(2x-1\right)\left(2x-3\right)>0\)

TH1: \(\left\{{}\begin{matrix}2x-1>0\\2x-3>0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x>\dfrac{1}{2}\\x>\dfrac{3}{2}\end{matrix}\right.\)

=>\(x>\dfrac{3}{2}\)

TH2: \(\left\{{}\begin{matrix}2x-1< 0\\2x-3< 0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x< \dfrac{1}{2}\\x< \dfrac{3}{2}\end{matrix}\right.\)

=>\(x< \dfrac{1}{2}\)

ngọc linh
Xem chi tiết
Nguyễn Lê Phước Thịnh
7 tháng 1 2022 lúc 21:54

\(Q=\dfrac{x+3\sqrt{x}+2-2x+4\sqrt{x}-5\sqrt{x}-2}{x-4}\cdot\dfrac{\left(\sqrt{x}+2\right)^2}{\sqrt{x}\left(3-\sqrt{x}\right)}\)

\(=\dfrac{-x+2\sqrt{x}}{\sqrt{x}-2}\cdot\dfrac{\sqrt{x}+2}{\sqrt{x}\left(3-\sqrt{x}\right)}\)

\(=\dfrac{\sqrt{x}\left(\sqrt{x}-2\right)}{\sqrt{x}-2}\cdot\dfrac{\sqrt{x}+2}{\sqrt{x}\left(\sqrt{x}-3\right)}=\dfrac{\sqrt{x}+2}{\sqrt{x}-3}\)

Để Q<0 thì \(\sqrt{x}-3< 0\)

hay x<9

Kết hợp ĐKXĐ, ta được:

\(\left\{{}\begin{matrix}0< =x< 9\\x< >4\end{matrix}\right.\)

NGUYỄN ĐỖ BẢO VY
Xem chi tiết
Chibi Sieu Quay
Xem chi tiết
No name
Xem chi tiết
Vô danh
20 tháng 3 2022 lúc 16:16

a,ĐKXĐ:\(\left\{{}\begin{matrix}x\ne\pm1\\x\ne\dfrac{1}{2}\end{matrix}\right.\)

\(A=\left(\dfrac{2}{x+1}-\dfrac{1}{x-1}+\dfrac{5}{x^2-1}\right):\dfrac{2x+1}{x^2-1}\\ =\left(\dfrac{2\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}-\dfrac{x+1}{\left(x+1\right)\left(x-1\right)}+\dfrac{5}{\left(x+1\right)\left(x-1\right)}\right).\dfrac{\left(x-1\right)\left(x+1\right)}{2x+1}\\ =\dfrac{2x-2-x-1+5}{\left(x+1\right)\left(x-1\right)}.\dfrac{\left(x-1\right)\left(x+1\right)}{2x+1}\\ =\dfrac{x+2}{2x+1}\)

\(b,A=3\\ \Leftrightarrow\dfrac{x+2}{2x+1}=3\\ \Leftrightarrow6x+3=x+2\\ \Leftrightarrow5x+1=0\\ \Leftrightarrow x=-\dfrac{1}{5}\left(tm\right)\)

\(c,\dfrac{1}{A}=\dfrac{2x+1}{x+2}=\dfrac{2x+4-3}{x+2}=\dfrac{2\left(x+2\right)-3}{x+2}=2-\dfrac{3}{x+2}\)

Để `1/A` là số nguyên thì `3/(x+2)` nguyên \(\Rightarrow x+2\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\)

Ta có bảng:

x+2-3-113
x-5-3-1(ktm)1(ktm)

Vậy \(x\in\left\{-5;-3\right\}\)

Khánh Hoàng
Xem chi tiết
Akai Haruma
17 tháng 1 2023 lúc 18:05

Lời giải:

a. Với $x$ nguyên, để biểu thức có giá trị nguyên thì $x-1$ là ước của $2$

$\Rightarrow x-1\in\left\{1; -1; 2;-2\right\}$

$\Rightarrow x\in\left\{2; 0; 3; -1\right\}$

b. 

$\frac{x-2}{x-1}=\frac{(x-1)-1}{x-1}=1-\frac{1}{x-1}$

Để biểu thức nhận giá trị nguyên thì $\frac{1}{x-1}$ nguyên

$\Rightarrow x-1$ là ước của $1$

$\Rightarrow x-1\in\left\{1; -1\right\}$

$\Rightarrow x\in\left\{2; 0\right\}$

 

mai ngoc linh
Xem chi tiết
Du Xin Lỗi
26 tháng 2 2023 lúc 21:50

\(A=\left(\dfrac{x}{x^2-4}+\dfrac{2}{2-x}+\dfrac{1}{x+2}\right):\left(x-2+\dfrac{10-x^2}{x+2}\right)\)

\(\Rightarrow A=\left(\dfrac{x-2\left(x+2\right)+1\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}\right):\left(\dfrac{\left(x-2\right)\left(x+2\right)+10-x^2}{x+2}\right)\)

\(\Rightarrow A=\left(\dfrac{-6}{x^2-4}\right):\left(\dfrac{6}{x+2}\right)\)

\(\Rightarrow A=-\dfrac{6}{x^2-4}.\dfrac{x+2}{6}=-\dfrac{6\left(x+2\right)}{\left(x-2\right)\left(x+2\right)6}=-\dfrac{1}{x-2}\)

để A<0 thì :

\(\left\{{}\begin{matrix}x-2\ne0\\x-2\notin Z-\end{matrix}\right.\)\(\Leftrightarrow x\in\left\{3;4;5;6;7;8;9;....n\right\}\)

( Z- là tập hợp số nguyên âm )

Để A có giá trị nguyên thì :

\(\left\{{}\begin{matrix}x-2=1\\x-2=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\x=1\end{matrix}\right.\)

 

 

Nguyễn Lê Phước Thịnh
26 tháng 2 2023 lúc 21:43

 

loading...