1,Gpt \(x^2-x-1000\sqrt{1+8000x}=1000\)
Tìm X:
Bài 1:\(X^2-X-1000\sqrt{1+8000x}=1000\)
Giải pt vô tỉ: x2-x-\(1000\sqrt{1+8000x}=1000\)
\(x^2-x-1000\sqrt{8000x+1}=1000\)
\(\Leftrightarrow\left(x^2-x-4002000\right)-\left(1000\sqrt{8000x+1}-4001000\right)=0\)
\(\Leftrightarrow\left(x-2001\right)\left(x+2000\right)-\frac{1000\left(8000x+1-4001^2\right)}{1000\sqrt{8000x+1}+4001000}=0\)
\(\Leftrightarrow\left(x-2001\right)\left(x+2000\right)-\frac{1000\cdot8000\left(x-2001\right)}{1000\sqrt{8000x+1}+4001000}=0\)
\(\Leftrightarrow\left(x-2001\right)\left(\left(x+2000\right)-\frac{1000\cdot8000}{1000\sqrt{8000x+1}+4001000}\right)=0\)
\(\Rightarrow x=2001\)
Giari phương trình : a, x+2 = 3\(\sqrt{1-x^2}\)+ \(\sqrt{1+x}\)
b, 2\(\sqrt[3]{3x-2}\) + \(\sqrt[3]{6-5x}\)= 8
c,x^2 - x - 1000.\(\sqrt{1 +8000x}\)= 1000
Giải pt:1, \(\sqrt[3]{3x^2-x+2015}-\sqrt[3]{3x^2-7x+2016}-\sqrt[3]{6x-2017}=\sqrt[3]{2016}\) 2, \(x^2-x-1000\sqrt{1+8000x}=1000\) 3, \(x+2=3\sqrt{1-x^2}+\sqrt{1+x}\) Mấy bài này thấy khó nên chưa làm thử có j mn giúp
cho ba số x,y,z thỏa mãn đồng thời :\(\left\{{}\begin{matrix}x-2\sqrt{y}+1=0\\y-2\sqrt{z}+1=0\\z-2\sqrt{x}+1=0\end{matrix}\right.\)
tính giá trị của biểu thức A= x1000 +y1000+z1000
\(\left\{{}\begin{matrix}x-2\sqrt{y}+1=0\\y-2\sqrt{z}+1=0\\z-2\sqrt{x}+1=0\end{matrix}\right.\)
Cộng theo vế 3 pt trên ta có:
\(\left(x-2\sqrt{x}+1\right)+\left(y-2\sqrt{y}+1\right)+\left(z-2\sqrt{z}+1\right)=0\)
\(\Leftrightarrow\left(\sqrt{x}-1\right)^2+\left(\sqrt{y}-1\right)^2+\left(\sqrt{z}-1\right)^2=0\)
Dễ thấy: \(VT=\left(\sqrt{x}-1\right)^2+\left(\sqrt{y}-1\right)^2+\left(\sqrt{z}-1\right)^2\ge0=VP\)
Xảy ra khi \(\left\{{}\begin{matrix}\sqrt{x}-1=0\\\sqrt{y}-1=0\\\sqrt{z}-1=0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}\sqrt{x}=1\\\sqrt{y}=1\\\sqrt{z}=1\end{matrix}\right.\)\(\Rightarrow x=y=z=1\)
Suy ra \(A=x^{1000}+y^{1000}+z^{1000}=1+1+1=3\)
Giải phương trình:
X^2-X-1000\(\sqrt{1+8000.X}\)=1000
tính: \(x=\sqrt{1+999^2+\dfrac{999^2}{1000^2}}+\dfrac{999}{1000}\)
Áp dụng \(\sqrt{1+\dfrac{1}{n^2}+\dfrac{1}{\left(n+1\right)^2}}=1+\dfrac{1}{n}-\dfrac{1}{n+1}\) ta có:
\(x=\sqrt{1+\dfrac{1}{\left(\dfrac{1}{999}\right)^2}+\dfrac{1}{\left(\dfrac{1}{999}+1\right)^2}}+\dfrac{999}{1000}=1+\dfrac{1}{\dfrac{1}{999}}-\dfrac{1}{\dfrac{1}{999}+1}+\dfrac{999}{1000}=1+999-\dfrac{999}{1000}+\dfrac{999}{1000}=1000\)
chứng minh rằng
\(\sqrt{\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{\left(x+y\right)^2}}=\left|\frac{1}{x}+\frac{1}{y}-\frac{1}{x+y}\right|\).áp dụng tính M=\(\sqrt{1+999^2+\frac{999^2}{1000^2}}+\frac{999}{1000}\)
1) GPT : \(\sqrt{x+2+2\sqrt{\text{x}+1}}+\sqrt{x+2-2\sqrt{x+1}}=\frac{x+5}{2}\)
2) GPT : \(\sqrt{x+2\sqrt{ }x-1}-\sqrt{x-2\sqrt{x-1}}=2\)
1/ ĐKXĐ:...
\(\Leftrightarrow\sqrt{x+1+2\sqrt{x+1}+1}+\sqrt{x+1-2\sqrt{x+1}+1}=\frac{x+5}{2}\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x+1}+1\right)^2}+\sqrt{\left(1-\sqrt{x+1}\right)^2}=\frac{x+5}{2}\)
\(\Leftrightarrow\sqrt{x+1}+1+\left|1-\sqrt{x+1}\right|=\frac{x+5}{2}\)
Nếu \(0\ge x\ge-1\Rightarrow\left|1-\sqrt{x+1}\right|=1-\sqrt{x+1}\)
\(\Rightarrow2=\frac{x+5}{2}\Leftrightarrow x=-1\left(tm\right)\)
Nếu \(x>0\Rightarrow\left|1-\sqrt{x+1}\right|=\sqrt{x+1}-1\)
\(\Rightarrow2\sqrt{x+1}=\frac{x+5}{2}\Leftrightarrow16x+16=x^2+10x+25\)
\(\Leftrightarrow x^2-6x+9=0\Leftrightarrow x=3\left(tm\right)\)
Vậy...
Câu dưới tương tự