tim x ,
a, (1/3-1/2)^x-1=1/36
b,\(\dfrac{25}{5^x}\)= \(\dfrac{1}{125}\)
tim x : a, (\(\dfrac{1}{3}\)-\(\dfrac{1}{2}\))\(^{x-1}\)=\(\dfrac{1}{36}\)
b,\(\dfrac{25}{5^x}\)=\(\dfrac{1}{125}\)
a) \(\left(\dfrac{1}{3}-\dfrac{1}{2}\right)^{x-1}=\dfrac{1}{36}\) \(\Leftrightarrow\left(\dfrac{-1}{6}\right)^{x-1}=\dfrac{1}{36}\)
\(\Leftrightarrow\left(\dfrac{-1}{6}\right)^{x-1}=\left(\dfrac{1}{6}\right)^2\)
\(\Leftrightarrow x-1=2\Rightarrow x=3\)
b) \(\dfrac{25}{5^x}=\dfrac{1}{125}\Leftrightarrow\dfrac{25}{5^x}=\dfrac{25}{3125}\Leftrightarrow\dfrac{25}{5^x}=\dfrac{25}{5^5}\Rightarrow x=5\)
a) \(\left(\dfrac{1}{3}-\dfrac{1}{2}\right)^{x-1}=\dfrac{1}{36}\Leftrightarrow\left(-\dfrac{1}{6}\right)^{x-1}=\left(-\dfrac{1}{6}\right)^2\)
\(\Leftrightarrow x-1=2\Rightarrow x=2+1=3\)
b) \(\dfrac{25}{5^x}=\dfrac{1}{125}\Leftrightarrow\dfrac{25}{5^x}=\dfrac{25}{3125}\Leftrightarrow\dfrac{25}{5^x}=\dfrac{25}{5^5}\Rightarrow x=5\)
Giờ mới đúng thật nè
a, (\(\dfrac{1}{3}-\dfrac{1}{2}\))x-1 = \(\dfrac{1}{36}\)
<=> (\(-\dfrac{1}{6}\))x-1 = \(\dfrac{1}{36}\)
<=> (\(-\dfrac{1}{6}\))x-1 = (\(-\dfrac{1}{6}\))2
<=> x - 1 = 2
<=> x = 3
@Nguyễn Thị Phương Thảo
1/ (\(\left(-\dfrac{2}{3}\right)\)\(^2\) x \(\dfrac{-9}{8}\) - 25% x \(\dfrac{-16}{5}\)
2/ -1\(\dfrac{2}{5}\) x 75% + \(\dfrac{-7}{5}\) x 25%
3/ -2\(\dfrac{3}{7}\) x (-125%) + \(\dfrac{-17}{7}\) x 25%
4/ (-2)\(^3\) x (\(\dfrac{3}{4}\) x 0.25) : (2\(\dfrac{1}{4}\) - 1\(\dfrac{1}{6}\))
1) Ta có: \(\left(-\dfrac{2}{3}\right)^2\cdot\dfrac{-9}{8}-25\%\cdot\dfrac{-16}{5}\)
\(=\dfrac{4}{9}\cdot\dfrac{-9}{8}-\dfrac{1}{4}\cdot\dfrac{-16}{5}\)
\(=\dfrac{-1}{2}+\dfrac{4}{5}\)
\(=\dfrac{-5}{10}+\dfrac{8}{10}=\dfrac{3}{10}\)
2) Ta có: \(-1\dfrac{2}{5}\cdot75\%+\dfrac{-7}{5}\cdot25\%\)
\(=\dfrac{-7}{5}\cdot\dfrac{3}{4}+\dfrac{-7}{5}\cdot\dfrac{1}{4}\)
\(=\dfrac{-7}{5}\left(\dfrac{3}{4}+\dfrac{1}{4}\right)=-\dfrac{7}{5}\)
3) Ta có: \(-2\dfrac{3}{7}\cdot\left(-125\%\right)+\dfrac{-17}{7}\cdot25\%\)
\(=\dfrac{-17}{7}\cdot\dfrac{-5}{4}+\dfrac{-17}{7}\cdot\dfrac{1}{4}\)
\(=\dfrac{-17}{7}\cdot\left(\dfrac{-5}{4}+\dfrac{1}{4}\right)\)
\(=\dfrac{17}{7}\)
4) Ta có: \(\left(-2\right)^3\cdot\left(\dfrac{3}{4}\cdot0.25\right):\left(2\dfrac{1}{4}-1\dfrac{1}{6}\right)\)
\(=\left(-8\right)\cdot\left(\dfrac{3}{4}\cdot\dfrac{1}{4}\right):\left(\dfrac{9}{4}-\dfrac{7}{6}\right)\)
\(=\left(-8\right)\cdot\dfrac{3}{16}:\dfrac{54-28}{24}\)
\(=\dfrac{-3}{2}\cdot\dfrac{24}{26}\)
\(=\dfrac{-72}{52}=\dfrac{-18}{13}\)
Tìm x biết:
\(7^{2+x}+2\times7^{x-1}=345\)
\(81^{-2\times x}\times27^x=9^5\)
\(\left(\dfrac{1}{3}-\dfrac{1}{2}\right)^{x-1}=\dfrac{1}{36}\)
\(\dfrac{25}{5^x}=\dfrac{1}{125}\)
\(\dfrac{\left(-7\right)^{2\times x-1}}{49}=-343\)
a: \(\Leftrightarrow7^x\cdot49+7^x\cdot\dfrac{2}{7}=345\)
\(\Leftrightarrow7^x=7\)
hay x=1
c: \(\left(\dfrac{1}{3}-\dfrac{1}{2}\right)^{x-1}=\dfrac{1}{36}\)
\(\Leftrightarrow\left(-\dfrac{1}{6}\right)^{x-1}=\left(-\dfrac{1}{6}\right)^2\)
=>x-1=2
hay x=3
d: \(\dfrac{25}{5^x}=\dfrac{1}{125}\)
\(\Leftrightarrow5^x=5^2\cdot5^3=5^5\)
hay x=5
Tìm x, biết:
a) \(\dfrac{2}{3}\)x - \(\dfrac{1}{2}\)x = \(\left(-\dfrac{7}{12}\right)\) . \(1\dfrac{2}{5}\)
b) \(\left(\dfrac{1}{5}-\dfrac{3}{2}x\right)^2\) = \(\dfrac{9}{4}\)
c) (1,25 - \(\dfrac{4}{5}\)x)3 = -125
a) \(\dfrac{2}{3}x-\dfrac{1}{2}x=\left(-\dfrac{7}{12}\right)\cdot1\dfrac{2}{5}\)
\(\Rightarrow\dfrac{1}{6}x=\left(-\dfrac{7}{12}\right)\cdot\dfrac{7}{5}\)
\(\Rightarrow\dfrac{1}{6}x=-\dfrac{49}{60}\)
\(\Rightarrow x=-\dfrac{49}{60}:\dfrac{1}{6}\)
\(\Rightarrow x=-\dfrac{49}{10}\)
b) \(\left(\dfrac{1}{5}-\dfrac{3}{2}x\right)^2=\dfrac{9}{4}\)
\(\Rightarrow\left(\dfrac{1}{5}-\dfrac{3}{2}x\right)^2=\left(\pm\dfrac{3}{2}\right)^2\)
+) \(\dfrac{1}{5}-\dfrac{3}{2}x=\dfrac{3}{2}\)
\(\Rightarrow\dfrac{3}{2}x=\dfrac{1}{5}-\dfrac{3}{2}\)
\(\Rightarrow\dfrac{3}{2}x=-\dfrac{13}{10}\)
\(\Rightarrow x=-\dfrac{13}{10}:\dfrac{3}{2}\)
\(\Rightarrow x=-\dfrac{13}{15}\)
+) \(\left(1,25-\dfrac{4}{5}x\right)^3=-125\)
\(\Rightarrow\left(\dfrac{5}{4}-\dfrac{4}{5}x\right)^3=\left(-5\right)^3\)
\(\Rightarrow\dfrac{5}{4}-\dfrac{4}{5}x=-5\)
\(\Rightarrow\dfrac{4}{5}x=\dfrac{5}{4}+5\)
\(\Rightarrow\dfrac{4}{5}x=\dfrac{25}{4}\)
\(\Rightarrow x=\dfrac{25}{4}:\dfrac{4}{5}\)
\(\Rightarrow x=\dfrac{125}{16}\)
a, \(\dfrac{2}{3}\)\(x\) - \(\dfrac{1}{2}\)\(x\) = (- \(\dfrac{7}{12}\)). 1\(\dfrac{2}{5}\)
\(x\).(\(\dfrac{2}{3}\) - \(\dfrac{1}{2}\)) = (- \(\dfrac{7}{12}\)) . \(\dfrac{7}{5}\)
\(x\). \(\dfrac{1}{6}\) = - \(\dfrac{49}{60}\)
\(x\) = - \(\dfrac{49}{60}\).6
\(x\) = -\(\dfrac{49}{10}\)
tim x:
a, \(\dfrac{1}{2}x+\dfrac{3}{5}x=\dfrac{-33}{25}\)
b, \(\left(\dfrac{2}{3}x-\dfrac{4}{9}\right)\left(\dfrac{1}{2}+\dfrac{-3}{7}:x\right)=0\)
a. \(\dfrac{1}{2}x+\dfrac{3}{5}x=\dfrac{-33}{25}\)
\(\Rightarrow\dfrac{11}{10}x=\dfrac{-33}{25}\)
\(\Rightarrow x=\dfrac{-33}{25}:\dfrac{11}{10}=\dfrac{-6}{5}\)
Vậy.........
b. \(\left(\dfrac{2}{3}x-\dfrac{4}{9}\right)\left(\dfrac{1}{2}+\dfrac{-3}{7}:x\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}\dfrac{2}{3}x-\dfrac{4}{9}=0\\\dfrac{1}{2}+\dfrac{-3}{7}:x=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\dfrac{2}{3}x=\dfrac{4}{9}\\\dfrac{-3}{7}:x=\dfrac{-1}{2}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=\dfrac{6}{7}\end{matrix}\right.\)
Vậy................
a, 1/2xX+3/5xX=-33/25
Xx(1/2+3/5)=-33/25
Xx11/10=-33/25
X=-6/5
b, (23x−49)(12+−37:x)=0
hai truong hop
23x-49=0 12+37:x=0
23x=49 37:x=12
x=2 x=37:12
x=37/12
\(\dfrac{5^{x+1}}{125}\)=\(\dfrac{1}{25^{x-2}}\)
\(\dfrac{5^{x+1}}{125}=\dfrac{1}{25^{x-2}}\\ \dfrac{5^{x+1}}{125}=\dfrac{1}{5^{2x-4}}\\ 5^{x+1}\cdot5^{2x-4}=125\\ 5^{x+1+2x-4}=5^3\\ 5^{\left(x+2x\right)+\left(1-4\right)}=5^3\\ 5^{3x-3}=5^3\\ 3x-3=3\\ 3x=6\\ x=2\)
a) \(\dfrac{x+3}{x-3}-\dfrac{x-3}{x+3}=\dfrac{36}{x^2-9}\)
b) \(\dfrac{2x-1}{x+4}-\dfrac{1-3x}{x-4}=5+\dfrac{96}{x^2-16}\)
c) \(\dfrac{x+3}{x+1}-\dfrac{x-1}{x}=\dfrac{3x^2+4x+1}{x\left(x+1\right)}\)
Tìm x, biết:
a) \(\dfrac{3}{7}\)x - \(\dfrac{2}{3}\)x = \(\dfrac{10}{21}\)
b) \(\dfrac{7}{35}\) : (x - \(\dfrac{1}{3}\)) = \(-\dfrac{2}{25}\)
c) 3.(x - \(\dfrac{1}{2}\)) - 5. (x + \(\dfrac{3}{5}\)) = -x + \(\dfrac{1}{5}\)
a, \(\dfrac{3}{7}\)\(x\)- \(\dfrac{2}{3}\)\(x\) = \(\dfrac{10}{21}\)
(\(\dfrac{3}{7}\) - \(\dfrac{2}{3}\)) \(\times\) \(x\) = \(\dfrac{10}{21}\)
- \(\dfrac{5}{21}\) \(\times\) \(x\) = \(\dfrac{10}{21}\)
\(x\) = \(\dfrac{10}{21}\) : (-\(\dfrac{5}{21}\))
\(x\) = -2
b, \(\dfrac{7}{35}\) : (\(x-\dfrac{1}{3}\)) = - \(\dfrac{2}{25}\)
\(x\) - \(\dfrac{1}{3}\) = \(\dfrac{7}{35}\) : (- \(\dfrac{2}{25}\))
\(x\) - \(\dfrac{1}{3}\) = - \(\dfrac{5}{2}\)
\(x\) = - \(\dfrac{5}{2}\) + \(\dfrac{1}{3}\)
\(x\) = - \(\dfrac{13}{6}\)
c, 3.(\(x\) - \(\dfrac{1}{2}\)) - 5.(\(x\) + \(\dfrac{3}{5}\)) = - \(x\)+ \(\dfrac{1}{5}\)
3\(x\) - \(\dfrac{3}{2}\) - 5\(x\) - 3 = - \(x\) + \(\dfrac{1}{5}\)
- \(x\) + 5\(x\) - 3\(x\) = - \(\dfrac{3}{2}\) - 3 - \(\dfrac{1}{5}\)
\(x\) = - \(\dfrac{47}{10}\)
\(a,\dfrac{3}{7}x-\dfrac{2}{3}x=\dfrac{10}{21}\\ \Rightarrow x\left(\dfrac{3}{7}-\dfrac{2}{3}\right)=\dfrac{10}{21}\\ \Rightarrow x.-\dfrac{5}{21}=\dfrac{10}{21}\\ \Rightarrow x=-2\\ b,\dfrac{7}{35}:\left(x-\dfrac{1}{3}\right)=-\dfrac{2}{25}\\ \Rightarrow\dfrac{1}{5}:\left(x-\dfrac{1}{3}\right)=-\dfrac{2}{25}\\ \Rightarrow x-\dfrac{1}{3}=-\dfrac{5}{2}\\ \Rightarrow x=-\dfrac{13}{6}\\ c,3.\left(x-\dfrac{1}{2}\right)-5.\left(x+\dfrac{3}{5}\right)=-x+\dfrac{1}{5}\\ \Rightarrow3x-\dfrac{3}{2}-5x+5=-x+\dfrac{1}{5}\)
\(\Rightarrow x\left(3-5\right)-\dfrac{3}{2}+5=-x+\dfrac{1}{5}\\ \Rightarrow-2x-\dfrac{13}{2}=-x+\dfrac{1}{5}\\ \Rightarrow-x-\dfrac{13}{5}=\dfrac{1}{5}\\ \Rightarrow x=\dfrac{1}{5}-\dfrac{13}{5}\\ \Rightarrow x=-\dfrac{12}{5}.\)
a,73x−32x=2110⇒x(73−32)=2110⇒x.−215=2110⇒x=−2b,357:(x−31)=−252⇒51:(x−31)=−252⇒x−31=−25⇒x=−613c,3.(x−21)−5.(x+53)=−x+51⇒3x−23−5x+5=−x+51
a) \(\dfrac{10-2x}{2}=\dfrac{25-5x}{5}\)
b) \(\dfrac{x-3}{x-1}-\dfrac{2x+1}{x+1}=\dfrac{x-x^2}{x^2-1}\)
a, \(\dfrac{10-2x}{2}=\dfrac{25-5x}{5}\)
\(\Leftrightarrow\dfrac{2\left(5-x\right)}{2}=\dfrac{5\left(5-x\right)}{5}\)
\(\Leftrightarrow5-x=5-x\)
\(\Leftrightarrow0x=0\)
⇒ Có vô số giá trị của x thỏa mãn.
Vậy...
b, ĐKXĐ: \(x\ne\pm1\)
\(\dfrac{x-3}{x-1}-\dfrac{2x+1}{x+1}=\dfrac{x-x^2}{x^2-1}\)
\(\Leftrightarrow\dfrac{\left(x-3\right)\left(x+1\right)-\left(2x+1\right)\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}=\dfrac{x-x^2}{\left(x-1\right)\left(x+1\right)}\)
\(\Rightarrow x^2-2x-3-2x^2+x+1=x-x^2\)
\(\Leftrightarrow-2x=2\)
\(\Leftrightarrow x=-1\left(ktm\right)\)
Vậy...
a) Ta có: \(\dfrac{10-2x}{2}=\dfrac{25-5x}{5}\)
\(\Leftrightarrow5\left(10-2x\right)=2\left(25-5x\right)\)
\(\Leftrightarrow50-10x=50-10x\)
\(\Leftrightarrow0x=0\)(phương trình có vô số nghiệm)
Vậy: S={x|\(x\in R\)}