Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đặng Nguyễn Xuân Ngân
Xem chi tiết
Tong Duy Anh
16 tháng 6 2018 lúc 17:35

Đat 2017,5=t Ta có

\(\sqrt{\dfrac{\left(t+0,5\right)^2+\left(t-0,5\right)^2\cdot\left(t+0,5\right)^2+\left(t-0,5\right)^2}{\left(t+0,5\right)^2}}+\dfrac{t-0,5}{t+0,5}\\ =\sqrt{\dfrac{t^2+t+0,25+t^4-0,5t^2+0,0625+t^2-t+0,25}{\left(t+0,5\right)^2}}+\dfrac{t-0,5}{t+0,5}\\ =\dfrac{\sqrt{t^4+1,5t^2+0,5625}}{t+0,5}+\dfrac{t-0,5}{t+0,5}\\ =\dfrac{t^2+0,75+t-0,5}{t+0,5}\\ =\dfrac{\left(t+0,5\right)^2}{t+0,5}\\ =t+0,5\)thay t=2017,5 vào suy ra A=2017,5+0,5=2018

Hắc Hường
16 tháng 6 2018 lúc 17:48

Giải:

\(\sqrt{1+2017^2+\dfrac{2017^2}{2018^2}}+\dfrac{2017}{2018}\)

\(=\sqrt{\dfrac{1}{1^2}+\dfrac{1}{\left(\dfrac{1}{2017}\right)^2}+\dfrac{1}{\left(-\dfrac{2018}{2017}\right)^2}}+\dfrac{2017}{2018}\)

\(=\sqrt{\left(\dfrac{1}{1}+\dfrac{1}{\dfrac{1}{2017}}+\dfrac{1}{-\dfrac{2018}{2017}}\right)^2}+\dfrac{2017}{2018}\) (\(\left\{{}\begin{matrix}1>0\\2017^2>0\\\dfrac{2017^2}{2018^2}>0\end{matrix}\right.\Leftrightarrow1+2017^2+\dfrac{2017^2}{2018^2}>0\ne0\))

\(=1+2017+-\dfrac{2017}{2018}+\dfrac{2017}{2018}\)

\(=2018\)

Vậy ...

Big City Boy
Xem chi tiết
Nguyễn Hoàng Minh
14 tháng 10 2021 lúc 17:52

Đặt \(2017=a\)

\(A=\sqrt{1+a^2+\dfrac{a^2}{\left(a+1\right)^2}}+\dfrac{a}{a+1}\\ A=\sqrt{\left(a+1\right)^2-2a+\dfrac{a^2}{\left(a+1\right)^2}}+\dfrac{a}{a+1}\\ A=\sqrt{\left(a+1\right)^2-2\left(a+1\right)\cdot\dfrac{a}{a+1}+\left(\dfrac{a}{a+1}\right)^2}+\dfrac{a}{a+1}\\ A=\sqrt{\left(a+1-\dfrac{a}{a+1}\right)^2}+\dfrac{a}{a+1}\\ A=\left|a+1-\dfrac{a}{a+1}\right|+\dfrac{a}{a+1}\)

Ta có \(\dfrac{a}{a+1}< 1\Leftrightarrow a+1-\dfrac{a}{a+1}>0\)

\(\Leftrightarrow A=a+1-\dfrac{a}{a+1}+\dfrac{a}{a+1}=a+1=2018\)

Akai Shuchi
Xem chi tiết
Thái Thùy Linh
Xem chi tiết
Nguyễn Lê Phước Thịnh
31 tháng 5 2022 lúc 14:33

Sửa đề: \(M=\sqrt{1^2+2017^2+\dfrac{2017^2}{2018^2}}+\dfrac{2017}{2018}\)

\(=\sqrt{1^2+\dfrac{1}{\left(\dfrac{1}{2017}\right)^2}+\dfrac{1}{\left(-\dfrac{2018}{2017}\right)^2}}+\dfrac{2017}{2018}\)

\(=\sqrt{\left(\dfrac{1}{1}+\dfrac{1}{\dfrac{1}{2017}}+\dfrac{1}{-\dfrac{2018}{2017}}\right)^2}+\dfrac{2017}{2018}\)

\(=1+2017-\dfrac{2017}{2018}+\dfrac{2017}{2018}\)

=2018

Khánh Linh
Xem chi tiết
Kimian Hajan Ruventaren
Xem chi tiết
Hồng Phúc
19 tháng 1 2021 lúc 18:25

Áp dụng BĐT Cosi cho 2018 số:

\(2017.6^{2018}.\sqrt[2017]{m}+\dfrac{\left(2a\right)^{2018}}{m}\ge2018\sqrt[2018]{\left(6^{2018}.\sqrt[2017]{m}\right)^{2017}\dfrac{\left(2a\right)^{2018}}{m}}=2018.2.6^{2017}.a\)

\(\Leftrightarrow\dfrac{\left(2a\right)^{2018}}{m}\ge2018.2.6^{2017}.a-2017.6^{2018}.\sqrt[2017]{m}\)

\(\Leftrightarrow\dfrac{2\left(2a\right)^{2018}}{m}\ge2018.4.6^{2017}.a-2017.2.6^{2018}.\sqrt[2017]{m}\)

Tương tự: \(\dfrac{2\left(2b\right)^{2018}}{n}\ge2018.4.6^{2017}.b-2017.2.6^{2018}.\sqrt[2017]{n}\)

\(\dfrac{3.c^{2018}}{p}\ge2018.3.6^{2017}.c-2017.6^{2018}.3.\sqrt[2017]{p}\)

\(\Rightarrow S\ge2018.6^{2017}\left(4a+4b+3c\right)-2017.6^{2018}\left(2\sqrt[2017]{m}+2\sqrt[2017]{n}+3\sqrt[2017]{p}\right)\)

\(\ge2018.6^{2017}.42-2017.6^{2018}.7=7.6^{2018}>6^{2018}\)

Vậy \(S>6^{2018}\)

Thiên Chỉ Hạc
Xem chi tiết
Ma Sói
21 tháng 7 2018 lúc 20:44

Áp dụng bđt Svacxo ta có :

\(\dfrac{2017}{\sqrt{2018}}+\dfrac{2018}{\sqrt{2017}}\ge\dfrac{\left(\sqrt{2017}+\sqrt{2018}\right)^2}{\sqrt{2018}+\sqrt{2017}}=\sqrt{2017}+\sqrt{2018}\)

Dấu bằng xảy ra khi:

\(\dfrac{2017}{\sqrt{2018}}=\dfrac{2018}{\sqrt{2017}}\Leftrightarrow2017=2018\left(vl\right)\)

Suy ra không xảy ra dấu bằng

Vậy \(\dfrac{2017}{\sqrt{2018}}+\dfrac{2018}{\sqrt{2017}}>\sqrt{2017}+\sqrt{2018}\)

qwerty
23 tháng 6 2017 lúc 17:56

không thể cm

Big City Boy
Xem chi tiết
Nguyễn Hoàng Minh
8 tháng 10 2021 lúc 7:21

Áp dụng BĐT Cauchy–Schwarz ta được:

\(x=\dfrac{2017}{\sqrt{2018}}+\dfrac{2018}{\sqrt{2017}}\ge\dfrac{\left(\sqrt{2018}+\sqrt{2017}\right)^2}{\sqrt{2018}+\sqrt{2017}}=\sqrt{2018}+\sqrt{2017}=y\)

Dấu \("="\Leftrightarrow\dfrac{2017}{\sqrt{2018}}=\dfrac{2018}{\sqrt{2017}}\Leftrightarrow2017=2018\left(vô.lí\right)\)

Vậy đẳng thức ko xảy ra hay \(x>y\)

Chi Nguyễn Khánh
Xem chi tiết
Hung nguyen
31 tháng 7 2018 lúc 8:51

a/ Ta có:

\(\dfrac{1}{\sqrt{n+1}+\sqrt{n}}=\dfrac{\left(\sqrt{n+1}-\sqrt{n}\right)}{\left(\sqrt{n+1}+\sqrt{n}\right)\left(\sqrt{n+1}-\sqrt{n}\right)}=\sqrt{n+1}-\sqrt{n}\)

\(\Rightarrow A=\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+...+\sqrt{2019}-\sqrt{2018}=\sqrt{2019}-1\)

Nguyễn Tấn An
31 tháng 7 2018 lúc 8:55

a.\(A=\dfrac{1}{\sqrt{2}+1}+\dfrac{1}{\sqrt{3}+\sqrt{2}}+\dfrac{1}{\sqrt{4}+\sqrt{3}}+...+\dfrac{1}{\sqrt{2019}+\sqrt{2018}}=\dfrac{\sqrt{2}-1}{\left(\sqrt{2}+1\right)\left(\sqrt{2}-1\right)}+\dfrac{\sqrt{3}-\sqrt{2}}{\left(\sqrt{3}+\sqrt{2}\right)\left(\sqrt{3}-\sqrt{2}\right)}+...+\dfrac{\sqrt{2019}-\sqrt{2018}}{\left(\sqrt{2019}+\sqrt{2018}\right)\left(\sqrt{2019}-\sqrt{2018}\right)}=\sqrt{2}-1+\sqrt{3}-\sqrt{2}+\sqrt{4}-\sqrt{3}+...+\sqrt{2019}-\sqrt{2018}=\sqrt{2019}-1\)

Hung nguyen
31 tháng 7 2018 lúc 8:58

b/ \(\dfrac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\dfrac{1}{\sqrt{n\left(n+1\right)}\left(\sqrt{n+1}+\sqrt{n}\right)}\)

\(=\dfrac{\left(\sqrt{n+1}-\sqrt{n}\right)}{\sqrt{n\left(n+1\right)}\left(\sqrt{n+1}+\sqrt{n}\right)\left(\sqrt{n+1}-\sqrt{n}\right)}=\dfrac{\left(\sqrt{n+1}-\sqrt{n}\right)}{\sqrt{n\left(n+1\right)}}=\dfrac{1}{\sqrt{n}}-\dfrac{1}{\sqrt{n+1}}\)

\(\Rightarrow B=\dfrac{1}{\sqrt{1}}-\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{2017}}-\dfrac{1}{\sqrt{2018}}=1-\dfrac{1}{\sqrt{2018}}\)