Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phạm Mạnh Kiên
Xem chi tiết
Akai Haruma
19 tháng 7 2021 lúc 17:41

Bài 1:
a.

\(\frac{1}{2\sqrt{2}-3\sqrt{3}}=\frac{2\sqrt{2}+3\sqrt{3}}{(2\sqrt{2}-3\sqrt{3})(2\sqrt{2}+3\sqrt{3})}=\frac{2\sqrt{2}+3\sqrt{3}}{(2\sqrt{2})^2-(3\sqrt{3})^2}=\frac{2\sqrt{2}+3\sqrt{3}}{-19}\)

b.

\(=\sqrt{\frac{(3-\sqrt{5})^2}{(3-\sqrt{5})(3+\sqrt{5})}}=\sqrt{\frac{(3-\sqrt{5})^2}{3^2-5}}=\sqrt{\frac{(3-\sqrt{5})^2}{4}}=\sqrt{(\frac{3-\sqrt{5}}{2})^2}=|\frac{3-\sqrt{5}}{2}|=\frac{3-\sqrt{5}}{2}\)

 

Akai Haruma
19 tháng 7 2021 lúc 17:43

Bài 2.

a. 

\(=\frac{\sqrt{8}(\sqrt{5}+\sqrt{3})}{(\sqrt{5}-\sqrt{3})(\sqrt{5}+\sqrt{3})}=\frac{2\sqrt{2}(\sqrt{5}+\sqrt{3})}{5-3}=\sqrt{2}(\sqrt{5}+\sqrt{3})=\sqrt{10}+\sqrt{6}\)

b.

\(=\sqrt{\frac{(2-\sqrt{3})^2}{(2-\sqrt{3})(2+\sqrt{3})}}=\sqrt{\frac{(2-\sqrt{3})^2}{2^2-3}}=\sqrt{(2-\sqrt{3})^2}=|2-\sqrt{3}|=2-\sqrt{3}\)

Akai Haruma
19 tháng 7 2021 lúc 17:48

Bài 3:

a.

\(M=\left[\frac{15(\sqrt{6}-1)}{(\sqrt{6}+1)(\sqrt{6}-1)}+\frac{4(\sqrt{6}+2)}{(\sqrt{6}-2)(\sqrt{6}+2)}-\frac{12(3+\sqrt{6})}{(3-\sqrt{6})(3+\sqrt{6})}\right](\sqrt{6}+11)\)

\(=\left[\frac{15(\sqrt{6}-1)}{6-1}+\frac{4(\sqrt{6}+2)}{6-2^2}-\frac{12(3+\sqrt{6})}{3^2-6}\right](\sqrt{6}+11)\)

\(=[3(\sqrt{6}-1)+2(\sqrt{6}+2)-4(3+\sqrt{6})](\sqrt{6}+11)=(\sqrt{6}-11)(\sqrt{6}+11)=6-11^2=-115\)

b.

\(N=\left[1-\frac{\sqrt{5}(\sqrt{5}+1)}{\sqrt{5}+1}\right].\left[\frac{\sqrt{5}(\sqrt{5}-1)}{1-\sqrt{5}}-1\right]\)

\(=(1-\sqrt{5})(-\sqrt{5}-1)=(\sqrt{5}-1)(\sqrt{5}+1)=5-1=4\)

nguyenthienho
Xem chi tiết
Nguyễn Lê Phước Thịnh
17 tháng 12 2020 lúc 17:19

1) Ta có: \(3\sqrt{12}+\dfrac{1}{2}\sqrt{48}-\sqrt{27}\)

\(=3\cdot2\sqrt{3}+\dfrac{1}{2}\cdot4\sqrt{3}-3\sqrt{3}\)

\(=6\sqrt{3}+2\sqrt{3}-3\sqrt{3}\)

\(=5\sqrt{3}\)

2) Ta có: \(\dfrac{2}{\sqrt{3}-5}\)

\(=\dfrac{2\left(\sqrt{3}+5\right)}{\left(\sqrt{3}-5\right)\left(\sqrt{3}+5\right)}\)

\(=\dfrac{2\left(\sqrt{3}+5\right)}{3-25}\)

\(=\dfrac{-2\left(\sqrt{3}+5\right)}{22}\)

\(=\dfrac{-\sqrt{3}-5}{11}\)

3) Ta có: \(\sqrt{\dfrac{2}{5}}\)

\(=\dfrac{\sqrt{2}}{\sqrt{5}}\)

\(=\dfrac{\sqrt{2}\cdot\sqrt{5}}{5}\)

\(=\dfrac{\sqrt{10}}{5}\)

Minh Anh Vũ
Xem chi tiết
An Thy
16 tháng 7 2021 lúc 16:31

\(\dfrac{\sqrt{5}-\sqrt{3}}{\sqrt{2}}=\dfrac{\sqrt{2}\left(\sqrt{5}-\sqrt{3}\right)}{\sqrt{2}.\sqrt{2}}=\dfrac{\sqrt{10}-\sqrt{6}}{2}\)

\(\dfrac{1}{\sqrt{3}+\sqrt{2}+1}=\dfrac{\sqrt{3}-\sqrt{2}-1}{\left(\sqrt{3}+\sqrt{2}+1\right)\left(\sqrt{3}-\sqrt{2}-1\right)}\)

\(=\dfrac{\sqrt{3}-\sqrt{2}-1}{3-\left(\sqrt{2}+1\right)^2}=\dfrac{\sqrt{3}-\sqrt{2}-1}{-2\sqrt{2}}=\dfrac{\left(\sqrt{3}-\sqrt{2}-1\right)\sqrt{2}}{-2\sqrt{2}.\sqrt{2}}=\dfrac{\sqrt{6}-2-\sqrt{2}}{-4}\)

\(=\dfrac{2+\sqrt{2}-\sqrt{6}}{4}\)

Nguyễn Lê Phước Thịnh
17 tháng 7 2021 lúc 0:41

\(\dfrac{\sqrt{5}-\sqrt{3}}{\sqrt{2}}=\dfrac{\sqrt{10}-\sqrt{6}}{2}\)

\(\dfrac{1}{\sqrt{3}+\sqrt{2}+1}=\dfrac{2+\sqrt{2}-\sqrt{6}}{4}\)

nmixx aespa
Xem chi tiết
HT.Phong (9A5)
31 tháng 7 2023 lúc 16:28

\(\dfrac{3\sqrt{5}}{2\sqrt{5}-1}\)

\(=\dfrac{3\sqrt{5}\left(2\sqrt{5}+1\right)}{\left(2\sqrt{5}-1\right)\left(2\sqrt{5}+1\right)}\)

\(=\dfrac{30-3\sqrt{5}}{\left(2\sqrt{5}\right)^2-1}\)

\(=\dfrac{30-\sqrt{5}}{20-1}\)

\(=\dfrac{30-\sqrt{5}}{19}\)

Trần Thanh
Xem chi tiết
Đỗ Thị Thiên Lý
17 tháng 2 2019 lúc 22:39

Theo mình thì làm như vầy nha:

\(\dfrac{1+\sqrt{5}}{\sqrt{15}-\sqrt{5}+\sqrt{3}-1}\)

=\(\dfrac{1+\sqrt{5}}{\left(\sqrt{15}-\sqrt{5}\right)+\left(\sqrt{3}-1\right)}\)

=\(\dfrac{1+\sqrt{5}}{\sqrt{5}\left(\sqrt{3}-1\right)+\left(\sqrt{3}-1\right)}\)

=\(\dfrac{1+\sqrt{5}}{\left(1+\sqrt{5}\right)\left(\sqrt{3}-1\right)}\)

=\(\dfrac{1}{\sqrt{3}-1}\)

=\(\dfrac{\sqrt{3}+1}{\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}\)

=\(\dfrac{\sqrt{3}+1}{3-1}\)

=\(\dfrac{\sqrt{3}+1}{2}\)

Nguyễn Vương Khoi
Xem chi tiết
Nguyễn Lê Phước Thịnh
7 tháng 1 2023 lúc 8:53

\(\dfrac{1}{\sqrt{2}}=\dfrac{\sqrt{2}}{2}\)

\(\dfrac{2+\sqrt{3}}{2-\sqrt{3}}=\left(2+\sqrt{3}\right)^2=7+4\sqrt{3}\)

Nguyễn Thị Hồng Hạnh
Xem chi tiết
Nguyễn Hoàng Minh
20 tháng 10 2021 lúc 16:04

\(=\dfrac{1-\sqrt[3]{2}+\sqrt[3]{4}}{1-2}=\dfrac{1-\sqrt[3]{2}+\sqrt[3]{4}}{-1}=\sqrt[3]{2}-\sqrt[3]{4}-1\)

nguyenthienho
Xem chi tiết
Nguyễn Trần Thành Đạt
18 tháng 12 2020 lúc 5:23

1) \(5\sqrt{8}-\dfrac{7}{2}\sqrt{72}+6\sqrt{\dfrac{1}{2}}\\ =5.\sqrt{4^2.\dfrac{1}{2}}-\dfrac{7}{2}.\sqrt{12^2.\dfrac{1}{2}}+6.\sqrt{\dfrac{1}{2}}=\left(5.4+\dfrac{7}{2}.12+6\right)\sqrt{\dfrac{1}{2}}\\ =68\sqrt{\dfrac{1}{2}}\)

2) \(\dfrac{6}{\sqrt{5}-1}=\dfrac{6.\left(\sqrt{5}+1\right)}{\left(\sqrt{5}-1\right).\left(\sqrt{5}+1\right)}=\dfrac{6\left(\sqrt{5}+1\right)}{5-1}\\ =\dfrac{6\left(\sqrt{5}+1\right)}{4}=\dfrac{3.\left(\sqrt{5+1}\right)}{2}\)

Phương Nguyễn
Xem chi tiết
Nguyễn Lê Phước Thịnh
23 tháng 8 2021 lúc 21:18

\(\sqrt{\dfrac{3-\sqrt{5}}{3+\sqrt{5}}}=\sqrt{\dfrac{\left(3-\sqrt{5}\right)^2}{4}}=\dfrac{3-\sqrt{5}}{2}\)