Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Ngọc Ni
Xem chi tiết
Nào Ai Biết
12 tháng 7 2018 lúc 17:43

\(\sqrt{x^2+2x+5}=-x^2-2x+1\)

\(\Leftrightarrow\sqrt{\left(x+1\right)^2+4}=-\left(x+1\right)^2+2\)

Ta thấy :

\(-\left(x+1\right)^2+2\le2\) Với \(\forall x\in R\)

\(\sqrt{\left(x+1\right)^2+4}\ge2\) Với \(\forall x\in R\)

\(\Rightarrow\sqrt{\left(x+1\right)^2+4}=-\left(x+1\right)^2+2\) Khi x + 1 = 0 \(\Leftrightarrow\) x = -1

Vậy Phương trình có nghiệm x = -1 .

Nào Ai Biết
12 tháng 7 2018 lúc 17:52

\(\sqrt{x^2-6x+10}+\sqrt{4x^2-24x+45}=-x^2+6x-5\)

Ta thấy :

\(\sqrt{x^2-6x+10}=\sqrt{\left(x-3\right)^2+1}\) \(\ge1\) Với \(\forall x\in R\)

\(\sqrt{4x^2-24x+45}=\sqrt{4\left(x-3\right)^2+9}\ge3\) Với \(\forall x\in R\)

\(-x^2+6x-5=-\left(x-3\right)^2+4\le4\) Với \(\forall x\in R\)

\(\Rightarrow VT\ge4\) ; \(VP\le4\)

\(\Rightarrow VT=VP=4\)

Dấu "=" xảy ra khi x - 3 = 0 \(\Leftrightarrow\) x = 3

Vậy phương trình có nghiệm x = 3 .

Phùng Khánh Linh
12 tháng 7 2018 lúc 17:53

\(a.\sqrt{x^2+2x+5}=-x^2-2x+1\)

Ta có : \(VT=\sqrt{x^2+2x+5}=\sqrt{\left(x+1\right)^2+4}\)\(2\)

\(VP=-x^2-2x+1=-\left(x^2+2x+1\right)+2=-\left(x+1\right)^2+2\)\(2\)

Để : \(\sqrt{\left(x+1\right)^2+4}=-\left(x+1\right)^2+2\)

\(x=-1\)

KL...........

\(b.\sqrt{x^2-6x+10}+\sqrt{4x^2-24x+45}=-x^2+6x-5\)

Ta có : \(\sqrt{x^2-6x+10}=\sqrt{\left(x-3\right)^2+1}\text{≥}1\left(1\right)\)

\(\sqrt{4x^2-24x+45}=\sqrt{4\left(x-3\right)^2+9}\text{≥}3\left(2\right)\)

\(-x^2+6x-5=-\left(x^2-6x+9\right)+4=-\left(x-3\right)^2+4\text{≥}4\left(3\right)\)

Từ ( 1 ; 2 ) , ta có :
\(\sqrt{\left(x-3\right)^2+1}+\sqrt{4\left(x-3\right)^2+9}\text{≥}4\left(4\right)\)

Từ ( 3 ; 4 ) để : \(\sqrt{\left(x-3\right)^2+1}+\sqrt{4\left(x-3\right)^2+9}=-\left(x-3\right)^2+4\)

\(x=3\)

KL..........

Tô Thu Huyền
Xem chi tiết
*Nước_Mắm_Có_Gas*
21 tháng 10 2018 lúc 10:54

đơn giản như đan rổ

mo chi mo ni
21 tháng 10 2018 lúc 11:12

1. đk: pt luôn xác định với mọi x

\(\sqrt{x^2-2x+1}-\sqrt{x^2-6x+9}=10\)

\(\Leftrightarrow\sqrt{\left(x-1\right)^2}-\sqrt{\left(x-3\right)^2}=10\)

\(\Leftrightarrow\left|x-1\right|-\left|x-3\right|=10\)

Bạn mở dấu giá trị tuyệt đối như lớp 7 là ok rồi!

2.  đk: \(x\geq 1\)

\(\sqrt{x+2\sqrt{x-1}}=3\sqrt{x-1}-5\)

\(\Leftrightarrow\sqrt{x-1+2\sqrt{x-1}+1}=3\sqrt{x-1}-5\)

\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}-1\right)^2}-3\sqrt{x-1}+5=0\)

\(\Leftrightarrow\left|\sqrt{x-1}-1\right|-3\sqrt{x-1}+5=0\)

Đến đây thì ổn rồi! bạn cứ xét khoảng rồi mở trị và bình phương 1 chút là ok cái bài!

Dương Thị Thu Hiền
Xem chi tiết
Trúc Giang
28 tháng 11 2021 lúc 17:58

Tớ đã trả lời ở câu hỏi mới nhất r nên xin phép được xóa câu hỏi này nhé

๖ۣۜDũ๖ۣۜN๖ۣۜG
Xem chi tiết
Nguyễn Việt Lâm
18 tháng 10 2020 lúc 9:49

ĐKXĐ: \(x\ge-1\)

- Với \(x=-1\) ko phải nghiệm

- Với \(x>-1\)

\(\Leftrightarrow x^2-11x+24+\left(x-5\right)\left(x+7-5\sqrt{x+1}\right)=0\)

\(\Leftrightarrow x^2-11x+24+\frac{\left(x-5\right)\left(x^2-11x+24\right)}{x+7+5\sqrt{x+1}}=0\)

\(\Leftrightarrow\left(x^2-11x+24\right)\left(1+\frac{x-5}{x+7+5\sqrt{x+1}}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-11x+24=0\Rightarrow x=...\\1+\frac{x-5}{x+7+5\sqrt{x+1}}=0\left(1\right)\end{matrix}\right.\)

Xét (1):

\(\Leftrightarrow x+7+5\sqrt{x+1}=5-x\)

\(\Leftrightarrow2\left(x+1\right)+5\sqrt{x+1}=0\) (vô nghiệm do \(x>-1\))

Vậy ...

Khách vãng lai đã xóa
Lê Thu Hiền
Xem chi tiết
Big City Boy
Xem chi tiết
Nguyễn Phương Uyên
Xem chi tiết
ミŇɦư Ἧσς ηgu lý ミ
1 tháng 11 2020 lúc 10:43

hok tốt !

Khách vãng lai đã xóa
Phan Tuấn Anh
17 tháng 2 2022 lúc 14:13

6 

HT 

@@@@@@@

@

Khách vãng lai đã xóa
Ngọc Vĩ
Xem chi tiết
Hương Trà
4 tháng 2 2016 lúc 17:02

Hỏi đáp Toán

Tô Thu Huyền
Xem chi tiết
Phùng Minh Quân
20 tháng 10 2018 lúc 20:04

\(1)\) ĐKXĐ : \(x\ge3\)

\(\sqrt{x^2-4x+3}+\sqrt{x-1}=0\)

\(\Leftrightarrow\)\(\sqrt{\left(x^2-4x+4\right)-1}+\sqrt{x-1}=0\)

\(\Leftrightarrow\)\(\sqrt{\left(x-2\right)^2-1}+\sqrt{x-1}=0\)

\(\Leftrightarrow\)\(\sqrt{\left(x-2-1\right)\left(x-2+1\right)}+\sqrt{x-1}=0\)

\(\Leftrightarrow\)\(\sqrt{\left(x-3\right)\left(x-1\right)}+\sqrt{x-1}=0\)

\(\Leftrightarrow\)\(\sqrt{x-1}\left(\sqrt{x-3}+1\right)=0\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}\sqrt{x-1}=0\\\sqrt{x-3}+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x\in\left\{\varnothing\right\}\end{cases}}}\)

Vậy \(x=1\)

\(2)\)\(\sqrt{x^2-2x+1}-\sqrt{x^2-6x+9}=10\)

\(\Leftrightarrow\)\(\sqrt{\left(x-1\right)^2}-\sqrt{\left(x-3\right)^2}=10\)

\(\Leftrightarrow\)\(\left|x-1\right|-\left|x-3\right|=10\)

+) Với \(\hept{\begin{cases}x-1\ge0\\x-3\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge1\\x\ge3\end{cases}\Leftrightarrow}x\ge3}\) ta  có : 

\(x-1-x+3=10\)

\(\Leftrightarrow\)\(0=8\) ( loại ) 

+) Với \(\hept{\begin{cases}x-1< 0\\x-3< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x< 1\\x< 3\end{cases}\Leftrightarrow}x< 1}\) ta có : 

\(1-x+x-3=10\)

\(\Leftrightarrow\)\(0=12\) ( loại ) 

Vậy không có x thỏa mãn đề bài 

Chúc bạn học tốt ~ 

PS : mới lp 8 sai đừng chửi nhé :v