Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Flash Dragon
Xem chi tiết
Đỗ Hoàng Nhi
12 tháng 7 2020 lúc 20:20

thx ban

Khách vãng lai đã xóa
Le Anh Thi
21 tháng 4 2021 lúc 16:38

Để \(\frac{2a+2b}{ab+1}\) là bình phương của 1 số nguyên thì 2a + 2b chia hết cho ab + 1; mà ab + 1 chia hết cho 2a + 2b => ab + 1 = 2b + 2a
=> \(\frac{2a+2b}{ab+1}\)=1 = 12

Khách vãng lai đã xóa
dream XD
Xem chi tiết
Trần Thanh Phương
11 tháng 3 2021 lúc 14:30

Số chính phương khi chia 3 chỉ dư 0 hoặc 1.

Trường hợp 1: 

\(a^2\equiv1\left(mod3\right);b^2\equiv0\left(mod3\right)\Leftrightarrow a^2+b^2\equiv1\left(mod3\right)\)(loại)

Trường hợp 2: 

\(a^2\equiv1\left(mod\right)3;b^2\equiv1\left(mod3\right)\Leftrightarrow a^2+b^2\equiv2\left(mod3\right)\)(loại)

Trường hợp 3: 

\(a^2\equiv0\left(mod3\right);b^2\equiv0\left(mod3\right)\Leftrightarrow a^2+b^2\equiv0\left(mod3\right)\) ( thỏa mãn )

Vậy có đpcm.

 

 

Giải:

Giả sử a không ⋮ 3 ➩ b không ⋮ 3

\(a^2 - 1 + b^2-1\) ⋮ 3

Mà \(a^2 +b^2\)2⋮ 3 (không có thể)

Vậy a và b ⋮ 3.

 

 

Adu Darkwa
Xem chi tiết
Nguyễn Lê Phước Thịnh
2 tháng 1 2021 lúc 9:57

Vì a,b là các số chẵn nên a,b viết được dưới dạng là a=2m và b=2n(Với m,n∈Z)

Ta có: \(a^2+b^2\)

\(=\left(2m\right)^2+\left(2n\right)^2\)

\(=4m^2+4n^2\)

\(=4\left(m^2+n^2\right)\)

\(=2\left(2m^2+2n^2\right)\)

\(=\left(m^2+n^2+1-m^2-n^2+1\right)\cdot\left(m^2+n^2+1+m^2+n^2-1\right)\)

\(=\left(m^2+n^2+1\right)^2-\left(m^2+n^2-1\right)^2\)

là bình phương của hai số nguyên(đpcm)

Ẩn danh
Xem chi tiết
Ko Cần Chs
Xem chi tiết
Nguyễn Việt Lâm
22 tháng 2 2021 lúc 0:00

Đặt \(P=a^2+b^2+c^2+ab+bc+ca\)

\(P=\dfrac{1}{2}\left(a+b+c\right)^2+\dfrac{1}{2}\left(a^2+b^2+c^2\right)\)

\(P\ge\dfrac{1}{2}\left(a+b+c\right)^2+\dfrac{1}{6}\left(a+b+c\right)^2=6\)

Dấu "=" xảy ra khi \(a=b=c=1\)

Lưu Nhật Minh
Xem chi tiết
Nguyễn Hoàng Minh
9 tháng 12 2021 lúc 19:14

Vì a,b,c là 3 cạnh tam giác nên \(a+b>c\Leftrightarrow ac+bc>c^2\)

CMTT: \(ab+bc>b^2;ab+ac>a^2\)

Cộng vế theo vế \(\Leftrightarrow a^2+b^2+c^2< ab+bc+ca+ab+bc+ca\)

\(\Leftrightarrow a^2+b^2+c^2< 2ab+2bc+2ca\\ \Leftrightarrow a^2+b^2+c^2-2ab-2bc-2ca< 0\)

 

trần minh khôi
Xem chi tiết
Đỗ Tuệ Lâm
11 tháng 5 2022 lúc 4:42

BN THAM KHẢO:

undefined

 

蝴蝶石蒜
Xem chi tiết
Yeutoanhoc
25 tháng 5 2021 lúc 14:18

Với mọi số thực ta luôn có:

`(a-b)^2>=0`

`<=>a^2-2ab+b^2>=0`

`<=>a^2+b^2>=2ab`

`<=>2(a^2+b^2)>=(a+b)^2=1`

`<=>a^2+b^2>=1/2(đpcm)`

Dấu "=' `<=>a=b=1/2`

bé đây thích chơi
25 tháng 5 2021 lúc 14:20

ta có:

(a²+b²)(1²+1²)≥(a.1+b.1)²

⇔ 2(a²+b²) ≥ (a+b)²

⇔ 2(a²+b²)≥ 1 (vì a+b=1)

⇔ a² +b² ≥ 1/2 (đpcm)

dấu "=) xảy ra khi a = b = 1/2

 

Ngo Tuyen
Xem chi tiết
ILoveMath
12 tháng 1 2022 lúc 21:01

\(\dfrac{a}{b}=\dfrac{b}{c}\Rightarrow ac=b^2\)

\(\dfrac{a^2+b^2}{b^2+c^2}=\dfrac{a^2+ac}{ac+c^2}=\dfrac{a\left(a+c\right)}{c\left(a+c\right)}=\dfrac{a}{c}\)

Nguyễn Lê Phước Thịnh
12 tháng 1 2022 lúc 21:02

Đề thiếu rồi bạn