Đặt \(P=a^2+b^2+c^2+ab+bc+ca\)
\(P=\dfrac{1}{2}\left(a+b+c\right)^2+\dfrac{1}{2}\left(a^2+b^2+c^2\right)\)
\(P\ge\dfrac{1}{2}\left(a+b+c\right)^2+\dfrac{1}{6}\left(a+b+c\right)^2=6\)
Dấu "=" xảy ra khi \(a=b=c=1\)
Đặt \(P=a^2+b^2+c^2+ab+bc+ca\)
\(P=\dfrac{1}{2}\left(a+b+c\right)^2+\dfrac{1}{2}\left(a^2+b^2+c^2\right)\)
\(P\ge\dfrac{1}{2}\left(a+b+c\right)^2+\dfrac{1}{6}\left(a+b+c\right)^2=6\)
Dấu "=" xảy ra khi \(a=b=c=1\)
Câu 6: ( 0,5 điểm)
Chứng minh rằng nếu a, b, c là ba cạnh của một tam giác thì:
a2+ b2+ c2 - 2ab -2bc- 2ac < 0
Cho a + b + c = 0. Chứng minh : (a2 + b2 + c2 )/2 * (a3 + b3 + c3 )/3 = (a5 + b5 + c5 )/5. Nhanh lên mọi người. Mik rất cần gấp !!!!
Cho các số a,b dương thỏa mãn a3 + b3 = 3ab - 1
Chứng minh rằng: a2018 + b2019 = 2
Tính giá tri của S-1.Biết a+c+b =2b; S= 2bc+b2+c2-a2-4p(p-a)
Cho a, b, c là các số thực thỏa mãn 1/a + 1/b +1/c = 1 và a + b + c = 1. Chứng minh rằng ( a-1)(b-1)(c-1) = 0
Cho 3 số thực a,b,c thoả mãn điều kiện ab+bc+ac=1. Chứng minh : \(P=\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\)bằng bình phương của một số thực?
Tìm các số dương a, b thỏa mãn a^3 + b^3 + 27 = 9abc
cho a, b là các số nguyên. chứng minh rằng a^3+b^3 chia hết cho 3 khi và chỉ khi a +b chia hết cho 3
Câu 1: Chứng minh rằng mọi a,b,c
a) a^2+b^2+1>= ab+a+b
b)a^2+b^2+c^2+3>2(a+b+c)