Ôn tập phép nhân và phép chia đa thức

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Tùng Lâm

Câu 1: Chứng minh rằng mọi a,b,c

a) a^2+b^2+1>= ab+a+b

b)a^2+b^2+c^2+3>2(a+b+c)

Lưu Hiền
19 tháng 4 2017 lúc 22:50

mình hướng dẫn nhé, muộn rồi, ko alfm kịp,

câu a nhân 2 vế với 2, chuyển vế đổi dáu => đpcm

cậu b chuyển vế đổi dấu ok

Lưu Hiền
20 tháng 4 2017 lúc 21:52

câu a

\(a^2+b^2+1\ge ab+a+b\left(1\right)\\ < =>2a^2+2b^2+2\ge2ab+2a+2b\\ < =>a^2-2a+1+a^2-2ab+b^2+b^2-2b+1\ge0\\ < =>\left(a-1\right)^2+\left(a-b\right)^2+\left(b-1\right)^2\ge0\left(\cdot\right)\)

\(\left\{{}\begin{matrix}\left(a-1\right)^2\ge0\left(\forall a\right)\\\left(a-b\right)^2\ge0\left(\forall a,b\right)\\\left(b-1\right)^2\ge0\left(\forall b\right)\end{matrix}\right.\)

=> (.) luôn đúng với mọi a và b

=>(1) luôn đúng

dấu bàng xảy ra khi a = b =1

câu b (sửa lại thành >= nhé)

\(a^2+b^2+c^2+3\ge2\left(a+b+c\right)\left(1\right)\\ < =>a^2-2a+1+b^2-2b+1+c^2-2c+1\ge0\\ < =>\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2\ge0\left(\cdot\right)\)

\(\left\{{}\begin{matrix}\left(a-1\right)^2\ge0\left(\forall a\right)\\\left(b-1\right)^2\ge0\left(\forall b\right)\\\left(c-1\right)^2\ge0\left(\forall c\right)\end{matrix}\right.\)

=>(.) luôn đúng

=> (1) luôn đúng

dấu = xảy ra khi a = b = c = 1

xong, chúc may mắn :)


Các câu hỏi tương tự
M Trangminsu
Xem chi tiết
Chitanda Eru
Xem chi tiết
Phạm Thị Yến Ngọc
Xem chi tiết
nguyen giang
Xem chi tiết
vuminhhieu
Xem chi tiết
Mã Thu Thu
Xem chi tiết
Vương Thiên Nhi
Xem chi tiết
Yetsuno Kame
Xem chi tiết
Thương Thương
Xem chi tiết