Có tồn tại hai số nguyên dương a,b khác nhau sao cho :
\(\dfrac{1}{a}-\dfrac{1}{b}=\dfrac{1}{a-b}\)
Bài 1 : Tồn tại hay không hai số dương a và b khác nhau sao \(\dfrac{1}{a}-\dfrac{1}{b}=\dfrac{1}{a-b}\)
Bài 2:
a)Nguời ta viết 7 số trên 1 vòng tròn. Tìm các số đó biết rằng tích của hai số bất kì cạnh nhau bằng 16
b) Hỏi như vậy vs 8 số
c) Hỏi như vậy vs n số
Bài 3 :Tìm hai số a và b biết a-b=2(a+b)=a:b
Giả sử a > b > 0 \(=>\frac{1}{a}< \frac{1}{b}=>\frac{1}{a}-\frac{1}{b}< 0;\frac{1}{a-b}>0\)
\(=>\frac{1}{a}-\frac{1}{b}\ne\frac{1}{a-b}\)
Trường hợp 2
Giả sử a < b \(=>\frac{1}{a}>\frac{1}{b}=>\frac{1}{a}-\frac{1}{b}>0;\frac{1}{a-b}< 0\)
\(=>\frac{1}{a}-\frac{1}{b}\ne\frac{1}{a-b}\)
Vậy không tồn tại hay không có hai số nguyên dương a , b khác nhau sao cho \(\frac{1}{a}-\frac{1}{b}=\frac{1}{a-b}\)
\(a-b=2\left(a+b\right)=\frac{a}{b}\)
\(\hept{\begin{cases}a-b=2\left(a+b\right)\\2\left(a+b\right)=\frac{a}{b}\end{cases}}\)
a-b=2(a+b)
a-b=2a+2b
3b=a
Another way :
a-b=2(a+b)
=> -2b - b -2a + a =0
-(3b+a)=0
3b+a=0
Do đó :3b-b= 3b/b = 3 nên b = 3/4
b = 3/4 nên a = - 9/4
\(\Leftrightarrow\hept{\begin{cases}b=\frac{3}{4}\\a=-\frac{9}{4}\end{cases}}\)
Cho các số thực a,b,c thỏa mãn \(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}=1\). Chứng tỏ rằng trong 3 số a,b,c tồn tại a,b,c tồn tại 1 số không âm, tồn tại 1 số không dương.
Gs a+b+c>1/a+1/b+1/c nhưng không t/m một và chỉ một trong 3 số a,b,c lớn hơn 1 TH1:Cả 3 số a,b,c đều lớn hơn 1 hoặc đều nhỏ hơn 1 suy ra mâu thẫn( vì abc=1) TH2 có 2 số lớn hơn 1 Gs a>1,b>1,c<1 suy ra a-1>0,b-1>0,c-1<0 suy ra (a-1)(b-1)(c-1)<0 suy ra abc+a+b+c-(ab+bc+ca)-1<0 suy ra a+b+c<ab+bc+ca suy ra a+b+c<abc/c+abc/a+abc/b suy ra a+b+c<1/a+1/b+1/c(mâu thuẫn với giả thuyết nên điều giả sử sai) suy ra đpcm
Có tồn tại hai số nguyên dương a,b khác nhau. sao cho:
1/a-1/b=1/a-b
\(\frac{1}{a}-\frac{1}{b}=\frac{1}{a-b}\Rightarrow\frac{b-a}{ab}=\frac{1}{a-b}\)\(\Rightarrow\)(b-a).(a-b)=ab
\(\Rightarrow\)-(a-b)2=ab
Vì -(a-b)2\(\le\)0 nên không tồn tại a,b
cho các số nguyên dương a,b,c,d thỏa mãn \(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+\dfrac{1}{d^2}=1\)Chứng minh rằng trong bốn số đã cho luôn tồn tại ít nhất hai số bằng nhau
Câu hỏi của Linh Suzu - Toán lớp 7 | Học trực tuyến, nhớ tìm trước khi hỏi, lần sau t ko tìm đâu
Cho các số nguyên dương a, b, c, d thỏa mãn \(\dfrac{1}{a^2} + \dfrac{1}{b^2} +\dfrac{1}{c^2} + \dfrac{1}{d^2} = 1\)
Chứng minh rằng trong bốn số đã cho luôn tồn tại ít nhất hai số bằng nhau.
Giả sử trong 4 số a;b;c;d không tồn tại 2 số bằng nhau
Không mất tính tổng quát ta giả sử a < b < c < d
=> a2 < b2 < c2 < d2 (do a;b;c;d nguyên dương)
=> \(\frac{1}{a^2}>\frac{1}{b^2}>\frac{1}{c^2}>\frac{1}{d^2}\)
\(\Rightarrow\frac{4}{a^2}>\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{1}{d^2}=1\)
=> a2 < 4
=> a < 2 (1)
Lại có: \(\frac{1}{a^2}\)< 1 (theo đê bai)
=> a2 > 1
=> a > 1 (do a nguyên dương) (2)
Từ (1) và (2) => 1 < a < 2, mâu thuẫn với đề là a nguyên dương
Như vậy trong 4 số đã cho luôn tồn tại ít nhất 2 số bằng nhau (đpcm)
1. Có tồn tại hay không hai số dương thỏa mãn:
\(\dfrac{1}{a}-\dfrac{1}{b}=\dfrac{1}{a-b}\)
2. Cho hai số hữu tỉ a và b thỏa mãn: a - b = 2( a + b ) =\(\dfrac{a}{b}\). Chứng minh a = - 3b.
3. Cho hai số hữu tỉ a và b thỏa a + b = ab = \(\dfrac{a}{b}\).
1/Chứng minh \(\dfrac{a}{b}\) = a - 1
2/Chứng minh b = -1
3/Tìm a
có tồn tại hay không hai số dương a và b khác nhau, sao cho 1/a-1/b=1/a-b
TL
Khi nào rảnh vào kênh H-EDITOR xem vid nha!!! Thanks!
cho a,b,c là 3 số ≠ 0 thỏa mãn a+b+C=2016 và \(\dfrac{\text{1}}{\text{a}}\)+\(\dfrac{\text{1}}{\text{b}}\)+\(\dfrac{\text{1}}{\text{c}}\)=\(\dfrac{\text{1}}{\text{2016}}\)
CMr: trong ba số a,b,c tồn tại 2 số đối nhau
\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{2016}\)
\(\Rightarrow\dfrac{bc+ac+bc}{abc}=\dfrac{1}{2016}\)
\(\Rightarrow\dfrac{bc+ac+ab}{abc}=\dfrac{1}{a+b+c}\)
\(\Rightarrow\left(ab+bc+ca\right)\left(a+b+c\right)=abc\)
\(\Rightarrow ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)+3abc=abc\)
\(\Rightarrow ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)+2abc=0\)
\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)
\(\Rightarrow a=-b\) hay \(b=-c\) hay \(c=-a\)
-Vậy trong ba số a,b,c tồn tại 2 số đối nhau.
Bài 2 :
a, Cho các số a,b,c,d là các số nguyên dương đôi 1 khác nhau và thỏa mãn :
\(\dfrac{2a+b}{a+b}+\dfrac{2b+c}{b+c}+\dfrac{2c+d}{c+d}+\dfrac{2d+a}{d+a}=6\) . Chứng minh \(A=abcd\) là số chính phương
b, Tìm nguyên a để \(a^3-2a^2+7a-7\) chia hết cho \(a^2+3\)