CMR: \(\frac{a^4+b^4}{2}\)>= ab3 + a3b - a2b2
CM: a4+b4≥a3b+ab3 (∀a,b)
\(a^4+b^4-a^3b-ab^3=a^3\left(a-b\right)-b^3\left(a-b\right)=\left(a-b\right)\left(a^3-b^3\right)=\left(a-b\right)\left(a-b\right)\left(a^2+ab+b^2\right)=\left(a-b\right)^2\left(a^2+ab+b^2\right)\)
Có: \(\left\{{}\begin{matrix}\left(a-b\right)^2\ge0\\a^2+ab+b^2>0\end{matrix}\right.\)
\(\Rightarrow a^4+b^4-a^3b-ab^3\ge0\)
\(\Rightarrow a^4+b^4\ge a^3b+ab^3\)
Áp dụng BĐT cosi với 2 số không âm:
`a^4+b^4+b^4+b^4>=4\root4{a^4b^12}=4|ab^3|>=4ab^3`
Hoàn toàn tương tự:
`b^4+a^4+a^4+a^4>=4a^3b`
`=>a^4+b^4+b^4+b^4+b^4+a^4+a^4+a^4>=4ab^3+4a^3b`
`<=>4(a^4+b^4)>=4(ab^3+a^3b)`
`<=>a^4+b^4>=ab^3+a^3b`
Tìm ab , biết :
ab + ab3 = 619 a3b : ab = 11 ( biết a < b )Tìm ab , biết :
ab + ab3 = 619ab + ab3 = 619 suy ra b phải = 6 vì 3
+ b = 9 nên b= 6 chuyển thành a6 + a63 suy ra a = 5 vì 6 + a = 1 vậy a = 5 cuyển thành 56 + 563 = 619
vậy ab = 56
2 .a3b : ab = 11 ( biết a < b )
cuyển thành 11 x ab = a3b mà 3 = a + b mà b lớn hơn a
nếu a = 3 thì b = 0
là sai
nếu a = 2 thì b = 1
là sai
nếu a = 1 thì b = 2 ( đúng yêu cầu )
ta thử a= 1 , b = 2 thì thành 132 : 12 = 11
vậy ab = 12
rồi nha bạn hih
ab; ab3; a3b là số hả bạn? nếu là số thì phải có gạch đầu chứ!!!
chắc bn ấy ko bit gạch hay bn ấy quên nhưng mk đảm bảo ab ,ab3,a3b là số
1.số ab3 chia hết cho 9 và lấy a-b =4. tìm số ab3
2.tìm y, biết :
(14,7 -y )x2/9 =1/3
1. Vì ab3 chia hết cho 9 nên ab= 51, đồng thời 5-1=4
Vậy ab=51
2. ( 14,7-y) = 1/3: 2/9
14,7-y = 3/2
y = 14,7-3/2
y = 14,7- 1,5
y = 13,2
Cho a . b ∈ ℝ ; a , b > 0 ; thỏa mãn 2 ( a 2 + b 2 ) + a b = ( a + b ) ( a b + 2 ) . Giá trị nhỏ nhất của biểu thức P = 4 ( a 3 b 3 + b 3 a 3 ) - 9 ( a 2 b 2 + b 2 a 2 ) bằng
A. - 10
B. - 21 4
C. - 23 4
D. 23 4
a) cho x,y dương. CMR: \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)
b) cho a+b+c=1 CMR: \(\frac{a}{a+b^2}+\frac{b}{b+c^2}+\frac{c}{c+a^2}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
a/ \(\Leftrightarrow\frac{x+y}{xy}\ge\frac{4}{x+y}\Leftrightarrow\left(x+y\right)^2\ge4xy\)
\(\Leftrightarrow x^2+y^2-2xy\ge0\Leftrightarrow\left(x-y\right)^2\ge0\) (luôn đúng)
Vậy BĐT đã cho đúng
b/ \(\frac{a}{a+b^2}=\frac{a}{a\left(a+b+c\right)+b^2}=\frac{a}{a^2+b^2+a\left(b+c\right)}\le\frac{a}{2ab+a\left(b+c\right)}=\frac{1}{b+b+b+c}\)
\(\Rightarrow\frac{a}{a+b^2}=\frac{1}{b+b+b+c}\le\frac{1}{16}\left(\frac{1}{b}+\frac{1}{b}+\frac{1}{b}+\frac{1}{c}\right)=\frac{1}{16}\left(\frac{3}{b}+\frac{1}{c}\right)\)
Tương tự: \(\frac{b}{b+c^2}\le\frac{1}{16}\left(\frac{3}{c}+\frac{1}{a}\right)\) ; \(\frac{c}{c+a^2}\le\frac{1}{16}\left(\frac{3}{a}+\frac{1}{c}\right)\)
Cộng vế với vế:
\(VT\le\frac{1}{16}\left(\frac{4}{a}+\frac{4}{b}+\frac{4}{c}\right)=\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
Dấu "=" xảy ra khi \(a=b=c=\frac{1}{3}\)
Cho a,b,c >0 abc=1. CMR \(\frac{a^4}{b^2\left(c+a\right)}+\frac{b^4}{c^2\left(a+b\right)}+\frac{c^4}{a^2\left(b+c\right)}\ge\frac{a+b+c}{2}\)
cho 3 số thực dương a,b,c
CMR: \(\frac{a^4}{\left(b+c\right)^2}+\frac{b^4}{\left(a+c\right)^2}+\frac{c^4}{\left(a+b\right)^2}\ge\frac{1}{4}\left(a^2+b^2+c^2\right)\)
Cho a,b,c>0. CMR:
\(\frac{a^4}{b+c}+\frac{b^4}{c+a}+\frac{c^4}{a+b}\ge\frac{a^3+b^3+c^3}{2}\)
\(\frac{a^4}{b+c}+\frac{b^4}{c+a}+\frac{c^4}{a+b}=\frac{a^6}{a^2b+a^2c}+\frac{b^6}{b^2a+b^2c}+\frac{c^6}{c^2a+c^2b}\ge\frac{\left(a^3+b^3+c^3\right)^2}{ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)}\ge\frac{\left(a^3+b^3+c^3\right)^2}{2\left(a^3+b^3+c^3\right)}=\frac{a^3+b^3+c^3}{2}\)
Với a,b > 0 . CMR:
\(\sqrt[3]{\frac{a^3+b^3}{2}}\le\sqrt[4]{\frac{a^4+b^4}{2}}\)
Dấu "=" ko xảy ra ???
\(\sqrt[3]{\frac{a^3+b^3}{2}}\le\sqrt[3]{\frac{\left(a+b\right)^3}{2}}< \sqrt[3]{\frac{\left(a+b\right)^3}{8}}=\frac{a+b}{2}\)
\(\sqrt[4]{\frac{a^4+b^4}{2}}\ge\sqrt[4]{\frac{\frac{\left(a^2+b^2\right)^2}{2}}{2}}\ge\sqrt[4]{\frac{\left[\frac{\left(a+b\right)^2}{2}\right]^2}{4}}=\sqrt[4]{\frac{\left(a+b\right)^4}{16}}=\frac{a+b}{2}\)
\(VT< VP\)
Dấu "=" không xảy ra ?!?
\(\sqrt[3]{\frac{a^3+b^3}{2}}\le\frac{a^3+b^3}{2}+1+1=\frac{a^3+b^3+4}{2}\) (theo cô si)
Mặt khác: \(VP>\sqrt[4]{\frac{\frac{\left(a^3+b^3+4\right)^2}{2}}{2}}\ge\sqrt[4]{\frac{\left[\frac{\left(a^3+b^3+4\right)^2}{2}\right]^2}{4}}\)
\(=\sqrt[4]{\frac{\left(a^3+b^3+4\right)^4}{16}}=\frac{a^3+b^3+4}{2}\ge VT\)
Vậy \(VP>VT\)
\(\sqrt[4]{\frac{a^4+b^4}{2}}=\sqrt[12]{\frac{\left(\frac{a^6}{a^2}+\frac{b^6}{b^2}\right)^3}{8}}\ge\sqrt[12]{\frac{\left(a^3+b^3\right)^6}{8\left(a^2+b^2\right)^3}}\ge\sqrt[12]{\frac{\frac{\left(a^3+b^3\right)^4\left(a^2+b^2\right)^4}{\left(a+b\right)^2}}{8\left(a^2+b^2\right)^3}}\)
\(=\sqrt[12]{\frac{\left(a^3+b^3\right)^4\left(a^2+b^2\right)}{8\left(a+b\right)^2}}\ge\sqrt[12]{\frac{\frac{\left(a^3+b^3\right)^4\left(a+b\right)^2}{2}}{8\left(a+b\right)^2}}=\sqrt[3]{\frac{a^3+b^3}{2}}\)
dấu "=" xay ra khi a=b=c
Cho a,b,c>0. CMR: \(\frac{a^4}{\left(a+b\right)\left(a^2+b^2\right)}+\frac{b^4}{\left(b+c\right)\left(b^2+c^2\right)}+\frac{c^4}{\left(c+a\right)\left(c^2+a^2\right)}\ge\frac{a+b+c}{4}\)