Ta có \(a^4+b^4-2ab^3-2a^3b+2a^2b^2\) =(a2-ab)2+(b2-ab)2\(\ge0\forall a;b\) suy ra
\(\dfrac{a^4+b^4}{2}\ge ab^3+a^3b-a^2b^2\)(đpcm)
Đẳng thức xảy ra \(\Leftrightarrow a=b\)
a4+b4 \(\ge\)ab(a+b) (1)
1/2 (a4+b4)\(\ge\)a2b2. (2)
(1) -(2)
=>dpcm
Ta có \(a^4+b^4-2ab^3-2a^3b+2a^2b^2\) =(a2-ab)2+(b2-ab)2\(\ge0\forall a;b\) suy ra
\(\dfrac{a^4+b^4}{2}\ge ab^3+a^3b-a^2b^2\)(đpcm)
Đẳng thức xảy ra \(\Leftrightarrow a=b\)
a4+b4 \(\ge\)ab(a+b) (1)
1/2 (a4+b4)\(\ge\)a2b2. (2)
(1) -(2)
=>dpcm
Rút Gọn
a)\(S=\sqrt{\frac{36a^2b^6c^8}{4}}\) với a < 0; b < 0
b)\(S=\sqrt{\frac{1}{abc}\left(\sqrt{\frac{abc^2}{4}+\sqrt{\frac{ab^5c^3}{9}}}\right)}\) với a > 0 ; b > 0 ; c > 0
1. Rút gọn:
\(\sqrt{8-2\sqrt{7}}-\sqrt{9-2\sqrt{14}}\)
\(\sqrt{5-2\sqrt{6}}-\sqrt{11-4\sqrt{6}}\)
2. Tính:
a. 2 + \(\sqrt{17-4\sqrt{9}+4\sqrt{5}}\)
b. \(\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{7}+4\sqrt{3}}}\)
c. \(\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}\)
3. CM:
a. \(\frac{x+y}{2}\) >= \(\sqrt{xy}\) với x, y >= 0
b. \(\frac{x}{y}+\frac{y}{x}\) >= 2 với x,y >= 0
c. a + b + 1 >= \(\sqrt{ab}\) + \(\sqrt{a}+\sqrt{b}\) với a,b >= 0.
Rút gọn rồi tính giá trị của biểu thức:
A= \(\sqrt{\frac{\left(x-6^{ }\right)^4}{\left(5-x\right)^2}}+\frac{x^2-36}{x-5}\left(x< 5\right)\)tại x = \(\sqrt{\frac{12}{5}}:\sqrt{\frac{48}{5}}.\sqrt{64}\)
B= 5x - \(\sqrt{125}\) + \(\frac{\sqrt{x^3+5x^2}}{\sqrt{x+5}}\left(x>=0\right)\)tại x = \(\sqrt{\frac{65}{17}}:\sqrt{\frac{13}{4}}\)
C= \(\sqrt{\frac{\left(x-2\right)^4}{\left(3-x\right)^2}}+\frac{\sqrt{x^4-2x^2+1}}{x-3}\left(x< 3\right)\)tại x =\(\sqrt{\frac{1}{18}}:\frac{1}{\sqrt{81}}\)
Các bác giúp e vs ạ, hứa sẽ tick, e cảm ơn nhiều!!!!!!!!
Bài 1 : Rút gọn biểu thức sau :
\(\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+\sqrt{16}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
Bài 2 : Chứng minh đẳng thức sau :
\(\sqrt{8+2\sqrt{10+2\sqrt{5}}}.\sqrt{8-2\sqrt{10+2\sqrt{5}}}=2\sqrt{5}-2\)
Bài 3 : Cho biểu thức E = \(\left(\frac{\sqrt{x}+1}{\sqrt{x}-1}-\frac{\sqrt{x}-1}{\sqrt{x}+1}+4\sqrt{x}\right):\left(\sqrt{x}-\frac{1}{\sqrt{x}}\right)\)
a) Rút gọn biẻu thức E
b) Tính giá trị của E khi x = \(\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\sqrt{4-\sqrt{15}}\)
1. Rút gọn:
\(\sqrt{8-2\sqrt{7}}-\sqrt{9-2\sqrt{14}}\)
2. Tính:
2 + \(\sqrt{17-4\sqrt{9}+4\sqrt{5}}\)
3. CM:
a. \(\frac{x+y}{2}\) >= \(\sqrt{xy}\) với x, y >= 0
b. \(\frac{x}{y}+\frac{y}{x}\) >= 2 với x,y >= 0
c. a + b + 1 >= \(\sqrt{ab}\) + \(\sqrt{a}+\sqrt{b}\) với a,b >= 0.
\(C=\frac{1}{2\sqrt{x}-2}-\frac{1}{2\sqrt{x}+2}-\frac{\sqrt{x}}{x-1}\); x≥0; x≠1
a) rút gọn C
b) thay x=\(\frac{4}{9}\); tính
1. Tìm giá trị của x để giá trị mỗi biểu thức sau được xác định
a) \(\sqrt{\frac{-3}{4-x}}\)
b)\(\sqrt{\frac{4}{\left(x+1\right)^2}}\)
c)\(\sqrt{\frac{x-1}{x-3}}\)
d)\(\frac{2}{1-\sqrt{x}}\)
e) \(\sqrt{\frac{2x+3}{-5}}\)
g)\(\sqrt{\left(x-1\right).\left(x-2\right)}\)
2. Tìm giá trị nguyên của a để biểu thức sau đc xác định
M=\(\frac{\sqrt{a}+3}{\sqrt{4-a}}\)
Rút gọn:
a;\(\frac{\sqrt{15}-\sqrt{5}}{\sqrt{3}-1}\)+\(\frac{5-2\sqrt{5}}{2\sqrt{5}-4}\)
b;\(\frac{5+\sqrt{5}}{\sqrt{10}+\sqrt{2}}\)
CMR A = \(\frac{1}{\sqrt{1}+\sqrt{3}}+\frac{1}{2\sqrt{3}+2\sqrt{5}}+....+\frac{1}{40\sqrt{79}+40\sqrt{81}}\) <\(\frac{8}{9}\)