Tìm tất cả các số nguyên x, biết:
\(\dfrac{1}{-2}\) \(< \)\(\dfrac{x}{2}\)\(\le\) 0
Tìm tất cả các giá trị của m để phương trình \(sin2x=2m\) có hai nghiệm phân biệt trên đoạn \(\left[0;\pi\right]\)
A. \(0\le x< \dfrac{1}{2}\) B. \(0\le x< 1\) C. \(0\le x\le\dfrac{1}{2}\) D. \(0\le x\le1\)
Không có đáp án đúng. Theo đáp án thì $m=0$ thì $\sin 2x=2m$ có 2 nghiệm pb thuộc $[0;\pi]$
Tức là $\sin 2x=0$ có 2 nghiệm pb $[0;\pi]$. Mà pt này có 3 nghiệm lận:
$x=0$
$x=\frac{1}{2}\pi$
$x=\pi$
Cho các biểu thức:\(A=\dfrac{2x}{x+3}+\dfrac{x+1}{x-3}+\dfrac{3-11x}{9-x^2};B=\dfrac{x-3}{x+1}\) \(\left(0\le x,x\ne9\right)\) a, Rút gọn A
b, Với P = A.B ,tìm x để P = \(\dfrac{9}{2}\)
c, Tìm x để B < 1
d, Tìm số nguyên x để P là số nguyên
a) Ta có: \(A=\dfrac{2x}{x+3}+\dfrac{x+1}{x-3}+\dfrac{3-11x}{9-x^2}\)
\(=\dfrac{2x\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}+\dfrac{\left(x+1\right)\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}+\dfrac{11x-3}{\left(x-3\right)\left(x+3\right)}\)
\(=\dfrac{2x^2-6x+x^2+4x+3+11x-3}{\left(x-3\right)\left(x+3\right)}\)
\(=\dfrac{3x^2+9x}{\left(x-3\right)\left(x+3\right)}\)
\(=\dfrac{3x\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}=\dfrac{3x}{x-3}\)
b)
ĐKXĐ: \(x\notin\left\{3;-3;-1\right\}\)
Ta có: P=AB
\(=\dfrac{3x}{x-3}\cdot\dfrac{x-3}{x+1}\)
\(=\dfrac{3x}{x+1}\)
Để \(P=\dfrac{9}{2}\) thì \(\dfrac{3x}{x+1}=\dfrac{9}{2}\)
\(\Leftrightarrow9\left(x+1\right)=6x\)
\(\Leftrightarrow9x-6x=-9\)
\(\Leftrightarrow3x=-9\)
hay x=-3(loại)
Vậy: Không có giá trị nào của x để \(P=\dfrac{9}{2}\)
Cho A = \(\dfrac{\sqrt{x}}{2\sqrt{x}+1}\); B = \(\dfrac{1}{2\sqrt{x}+1}\)(ĐKXĐ: x ≥ 0; x ≠ \(\dfrac{1}{4}\)). Tìm tất cả các giá trị của x để biểu thức: P = 5A + B nguyên.
Lời giải:
$5A+B=\frac{5\sqrt{x}+1}{2\sqrt{x}+1}$
$2(5A+B)=\frac{10\sqrt{x}+2}{2\sqrt{x}+1}=\frac{5(2\sqrt{x}+1)-3}{2\sqrt{x}+1}=5-\frac{3}{2\sqrt{x}+1}$
$5A+B$ nguyên
$\Rightarrow 2(5A+B)$ nguyên
$\Leftrightarrow 5-\frac{3}{2\sqrt{x}+1}$ nguyên
$\Leftrightarrow \frac{3}{2\sqrt{x}+1}$ nguyên
Ta thấy: $\frac{3}{2\sqrt{x}+1}\leq 3$ với mọi $x\geq 0$ và $\frac{3}{2\sqrt{x}+1}>0$ với mọi $x\geq 0$
Do đó $\frac{3}{2\sqrt{x}+1}$ nguyên thì nhận các giá trị $1,2,3$
$\Leftrightarrow x=0; \frac{1}{16}; 1$
a) Tìm tất cả các tham số m nguyên để \(F\left(x\right)=\dfrac{7}{x^2+\dfrac{1}{2}m}\) có nghiệm x nguyên và F(x) là số nguyên dương.
b) Với mọi \(m\ge0\), tìm giá trị lớn nhất của F(x).
Với mọi m < 0, tìm giá trị nhỏ nhất của F(x).
Cho hai biểu thức:
A = \(\dfrac{x-7}{\sqrt{x}}\) và B = \(\dfrac{3}{\sqrt{x}+2}+\dfrac{\sqrt{x}}{2-\sqrt{x}}+\dfrac{2x-3\sqrt{x}+6}{x-4}\), với \(x>0,x\ne4\)
Biết B sau khi thu gọn được: B = \(\dfrac{\sqrt{x}}{\sqrt{x}+2}\)
Tìm tất cả các giá trị nguyên của x để biểu thức P = A.B có giá trị nguyên
P=A*B
\(=\dfrac{x-7}{\sqrt{x}}\cdot\dfrac{\sqrt{x}}{\sqrt{x}+2}=\dfrac{x-7}{\sqrt{x}+2}\)
P nguyên
=>x-4-3 chia hết cho căn x+2
=>căn x+2 thuộc Ư(-3)
=>căn x+2=3
=>x=1
Tìm tất cả các số nguyên x,y
a)\(\dfrac{x}{2}=\dfrac{y}{5} mà x+y=35\)
b)\(\dfrac{x+2}{y+10}=\dfrac{1}{5} và y-3x=2\)
c)\(\dfrac{x}{4}=\dfrac{y}{5} và 2x-y=15\)
\(a.\)
\(\dfrac{x}{2}=\dfrac{y}{5}\)
Áp dụng tính chất dãy tỉ số bằng nhau :
\(\dfrac{x}{2}=\dfrac{y}{5}=\dfrac{x+y}{2+5}=\dfrac{35}{7}=5\)
\(\Rightarrow x=5\cdot2=10\\ y=5\cdot5=25\)
\(b.\)
\(\dfrac{x+2}{y+10}=\dfrac{1}{5}\)
\(\Leftrightarrow\dfrac{x+2}{1}=\dfrac{y+10}{5}\)
\(\Leftrightarrow\dfrac{3x+6}{3}=\dfrac{y+10}{5}\)
Áp dụng tính chất dãy tỉ số bằng nhau :
\(\Leftrightarrow\dfrac{3x+6}{3}=\dfrac{y+10}{5}=\dfrac{y+10-3x-6}{5-3}=\dfrac{2-4}{2}=-1\)
\(\Leftrightarrow\left\{{}\begin{matrix}3x+6=-3\\y+10=-5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-3\\y=-15\end{matrix}\right.\)
\(c.\)
\(\dfrac{x}{4}=\dfrac{y}{5}\)
\(\Leftrightarrow\dfrac{2x}{8}=\dfrac{y}{5}\)
Áp dụng tính chất dãy tỉ số bằng nhau :
\(\dfrac{2x}{8}=\dfrac{y}{5}=\dfrac{2x-y}{8-5}=\dfrac{15}{3}=5\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x=5\cdot8\\y=5\cdot5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=20\\y=25\end{matrix}\right.\)
a) Ta có: \(\dfrac{x}{2}=\dfrac{y}{5}\)
mà x+y=35
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{2}=\dfrac{y}{5}=\dfrac{x+y}{2+5}=\dfrac{35}{7}=5\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{x}{2}=5\\\dfrac{y}{5}=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=10\\y=25\end{matrix}\right.\)
Vậy: (x,y)=(10;25)
b) Ta có: \(\dfrac{x+2}{y+10}=\dfrac{1}{5}\)
nên \(\dfrac{x+2}{1}=\dfrac{y+10}{5}\)
hay \(\dfrac{3x+6}{3}=\dfrac{y+10}{5}\)
mà y-3x=2
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{3x+6}{3}=\dfrac{y+10}{5}=\dfrac{y-3x+10-6}{5-3}=\dfrac{2+4}{2}=3\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{3x+6}{3}=3\\\dfrac{y+10}{5}=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x+6=9\\y+10=15\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x=3\\y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=5\end{matrix}\right.\)
Vậy: (x,y)=(1;5)
c) Ta có: \(\dfrac{x}{4}=\dfrac{y}{5}\)
nên \(\dfrac{2x}{8}=\dfrac{y}{5}\)
mà 2x-y=15
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{2x}{8}=\dfrac{y}{5}=\dfrac{2x-y}{8-5}=\dfrac{15}{3}=5\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{x}{4}=5\\\dfrac{y}{5}=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=20\\y=25\end{matrix}\right.\)
Vậy: (x,y)=(20;25)
cho biểu thức
A = \(\left(\dfrac{\sqrt{x}+2}{x+2\sqrt{x}+1}-\dfrac{\sqrt{x}-2}{x-1}\right):\dfrac{\sqrt{x}}{\sqrt{x}+1}\)
1. Rút gọn biểu thức A
2. Tìm tất cả các số nguyên x để biểu thức A có giá trị là số nguyên
1: Ta có: \(A=\left(\dfrac{\sqrt{x}+2}{x+2\sqrt{x}+1}-\dfrac{\sqrt{x}-2}{x-1}\right):\dfrac{\sqrt{x}}{\sqrt{x}+1}\)
\(=\left(\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}-\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}\right):\dfrac{\sqrt{x}}{\sqrt{x}+1}\)
\(=\dfrac{x-\sqrt{x}+2\sqrt{x}-2-\left(x+\sqrt{x}-2\sqrt{x}-2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}:\dfrac{\sqrt{x}}{\sqrt{x}+1}\)
\(=\dfrac{x+\sqrt{x}-2-x+\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}}\)
\(=\dfrac{2\sqrt{x}}{\sqrt{x}\left(x-1\right)}\)
\(=\dfrac{2}{x-1}\)
2: ĐKXĐ: \(\left\{{}\begin{matrix}x>0\\x\ne1\end{matrix}\right.\)
Để A là số nguyên thì \(2⋮x-1\)
\(\Leftrightarrow x-1\inƯ\left(2\right)\)
\(\Leftrightarrow x-1\in\left\{1;-1;2;-2\right\}\)
\(\Leftrightarrow x\in\left\{2;0;3;-1\right\}\)
Kết hợp ĐKXĐ, ta được: \(x\in\left\{2;3\right\}\)
Vậy: Để A là số nguyên thì \(x\in\left\{2;3\right\}\)
Cho biểu thức:
B=\(\left(\dfrac{1}{3-\sqrt{x}}-\dfrac{1}{3+\sqrt{x}}\right).\dfrac{3+\sqrt{x}}{\sqrt{x}}\)( với x>0;x\(\ne\)9)
Rút gọn biểu thức và tìm tất cả các giá trị nguyên của x để B>\(\dfrac{1}{2}\)
`B=(1/(3-sqrtx)-1/(3+sqrtx))*(3+sqrtx)/sqrtx(x>=0,x ne 9)`
`B=((3+sqrtx)/(9-x)-(3-sqrtx)/(9-x))*(3+sqrtx)/sqrtx`
`B=((3+sqrtx-3+sqrtx)/(9-x))*(3+sqrtx)/sqrtx`
`B=(2sqrtx)/((3-sqrtx)(3+sqrtx))*(3+sqrtx)/sqrtx`
`B=2/(3-sqrtx)`
`B>1/2`
`<=>2/(3-sqrtx)-1/2>0`
`<=>(4-3+sqrtx)/[2(3-sqrtx)]>0`
`<=>(sqrtx+1)/(2(3-sqrtx))>0`
Mà `sqrtx+1>=1>0`
`<=>2(3-sqrtx)>0`
`<=>3-sqrtx>0`
`<=>sqrtx<3`
`<=>x<9`
A = \(\dfrac{\sqrt{x}}{\sqrt{x}-2}-\dfrac{4}{x-2\sqrt{x}}\) với x > 0, và x \(\ne\) 4
a) Rút gọn A
b) So sánh A với 1.
c) Tìm tất cả các giá trị nguyên để A nhận giá trị nguyên.
a) A= \(\dfrac{\sqrt{x}}{\sqrt{x-2}}-\dfrac{4}{x-2\sqrt{x}}=\dfrac{\sqrt{x}\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-2\right)}-\dfrac{4}{\sqrt{x}\left(\sqrt{x}-2\right)}=\dfrac{x-4}{\sqrt{x}\left(\sqrt{x}-2\right)}=\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\sqrt{x}\left(\sqrt{x}-2\right)}=\dfrac{\sqrt{x}+2}{\sqrt{x}}=\dfrac{\sqrt{x}\left(\sqrt{x}+2\right)}{\sqrt{x}\sqrt{x}}=\dfrac{x+2\sqrt{x}}{x}\)
b) Ta có x >0 nên \(\sqrt{x}\) >0
<=> \(2\sqrt{x}\) > 0
<=> \(x+2\sqrt{x}\) > x
<=> \(\dfrac{x+2\sqrt{x}}{x}\) > \(\dfrac{x}{x}\)
hay A > 1
c)