Không có đáp án đúng. Theo đáp án thì $m=0$ thì $\sin 2x=2m$ có 2 nghiệm pb thuộc $[0;\pi]$
Tức là $\sin 2x=0$ có 2 nghiệm pb $[0;\pi]$. Mà pt này có 3 nghiệm lận:
$x=0$
$x=\frac{1}{2}\pi$
$x=\pi$
Không có đáp án đúng. Theo đáp án thì $m=0$ thì $\sin 2x=2m$ có 2 nghiệm pb thuộc $[0;\pi]$
Tức là $\sin 2x=0$ có 2 nghiệm pb $[0;\pi]$. Mà pt này có 3 nghiệm lận:
$x=0$
$x=\frac{1}{2}\pi$
$x=\pi$
1, cho phương trình \(sin2x-\left(2m+\sqrt{2}\right)\left(sinx+cosx\right)+2m\sqrt{2}+1=0\) tìm các giá trị m để phương trình có đúng 2 nghiệm \(x\in\left(0;\dfrac{5\Pi}{4}\right)\)
2,tìm tất cả các giá trị thực của tham số m để phương trình \(cos2x+\left(2m+1\right)sinx-m-1=0\) có đúng 2 nghiệm thuộc khoảng \(\left(\dfrac{\Pi}{2};\dfrac{3\Pi}{2}\right)\)
3, cho phương trình \(cos^2x-2mcosx+6m-9=0\) tìm các giá trị m để phương trình có nghiệm thuộc khoảng \(\left(-\dfrac{\Pi}{2};\dfrac{\Pi}{2}\right)\)
Tính tổng tất cả các giá trị \(m\) nguyên để phương trình \(mcos2x=\dfrac{cos^4x-sin^4x}{sinx}\) có đúng 4 nghiệm phân biệt thuộc \(\left(0;2\pi\right)\).
A. 1
B. 2
C. 3
D. 0
1. Tập giá trị của hs: y = sin2x + cos2x là?
2. Giải pt: \(\frac{cosx-2sinx.cosx}{2cos^2x+sinx-1}=\sqrt{3}\)
3. Tìm GTLN và GTNN của hs: \(y=\frac{sinx+2cosx+3}{2+cosx}\)
4. Tập giá trị của: \(y=\sqrt{3}cos\frac{x}{2}-sin\frac{x}{2}\)
5. Giải pt: \(\sqrt{3}\left(sin2x+cos7x\right)=sin7x-cos2x\)
6. Giải pt: \(cos5x.cosx=cos4x.cos2x+3cos^2x+1\)
7. Đồ thị hs: \(y=sin\left(x+\frac{\pi}{4}\right)\) đi qua điểm nào sau đây? \(a.M\left(\frac{\pi}{4};0\right)\) \(b.M\left(\frac{\pi}{2};1\right)\) \(c.M\left(\frac{-\pi}{4};0\right)\) d. M(1;1)
8. Nghiệm của pt: \(2sin^2x-3sinx+1=0\) thỏa đk: \(0\le x\le\frac{\pi}{2}\) là:
9. Cho pt: m(sinx+cosx)+sinx.cosx+1=0. Tìm m để pt có đúng 1 nghiệm thuộc: \(\left[\frac{-\pi}{2};0\right]\)
10. Giải pt: \(\sqrt{3}cos5x-sin5x=2cos3x\)
11. Tập giá trị của hs: y = cos2x + 4sinx - 2 là?
12. Pt: \(2cos^2x+5sinx=4\) có nghiệm âm lớn nhất =?
13. Tổng tất cả các nghiệm của pt: cos5x + cos2x + 2sin3x.sin2x = 0 trên đoạn: \(\left[0;2\pi\right]\) là?
14. Tìm m để pt: cos2x - (2m - 1)cosx - m + 1 = 0 có đúng 2 nghiệm thuộc: \(\left[\frac{-\pi}{2};\frac{\pi}{2}\right]\) là?
15. Đồ thị hs: y = tanx - 2 đi qua? a. O(0;0) b.M\(\left(\frac{\pi}{4};-1\right)\) c. \(N\left(1;\frac{\pi}{4}\right)\) d. \(P\left(\frac{-\pi}{4};1\right)\)
1.giải phương trình: \(\frac{sin3x}{cosx+1}=0\) với \(\left[2\pi;4\pi\right]\)
2.giải phương trình \(cos^2x+cosx=0\) với \(\frac{\pi}{2}< x< \frac{3\pi}{2}\)
3. gpt: \(2sin^2x-3sinx+1=0\) với \(0\le x\le\frac{\pi}{2}\)
Cho phương trình \(\left(cosx+1\right)\left(4cos2x-mcosx\right)=msin^2x\) . Số các giá trị nguyên của m để phương trình có đúng 2 nghiệm thuộc \(\left[0;\dfrac{2\pi}{3}\right]\) là
1) So nghiem phuong trinh \(\dfrac{\left(1+cos2x+sin2x\right)cosx+cos2x}{1+tanx}=cosx\) voi x ∈ (0; \(\dfrac{\Pi}{2}\)) la: (giai ra nua nha)
A. 0 B. 1 C. 2 D. 3
Phương trình 2sinx^2+3cosx=2 có nghiệm thoả mãn điều kiện 0°≤x≤360°
Mn giải giúp mình với
Phương trình mcos2x=1 có nghiệm khi:
A. \(m\ne0\)
B. \(\left[{}\begin{matrix}m\ge1\\m\le-1\end{matrix}\right.\)
C. m > 1
D. \(m\le1\)
tìm giá trị lớn nhất nhỏ nhất
a, y=\(sin^2x-2sinx+3cos^2x\) trên \(\left[0;\dfrac{\Pi}{2}\right]\)
b,\(y=sinx-cosx+sin2x+5\) trên \(\left[0;\dfrac{\Pi}{4}\right]\)
c,\(y=sinx-cosx+sinxcosx-3\)