Tìm tất cả các cặp số nguyên dương (x,y) sao cho \(\dfrac{x^2-2}{xy+2}\) có giá trị là số nguyên
Tìm tất cả các số nguyên dương \(x;y;z\) thoả mãn : \(3^x+2^y=1+2^z\)
Tìm tất cả các số thực dương x,y,z thỏa mãn :
\(\left(1+\dfrac{x}{y+z}\right)^2+\left(1+\dfrac{y}{x+z}\right)^2+\left(1+\dfrac{z}{x+y}\right)^2=\dfrac{27}{4}\)
tìm tất cả các cặp số nguyên [x;y] thoả mãn : x\((x+y)^2\)-y+1=0
Cho a, y, z là các số thực dương thoả mãn \(\dfrac{1}{x}+\dfrac{2}{y}\le1;x+\dfrac{2}{z}\le3\) . Tìm giá trị nhỏ nhất của biểu thức \(P=y^2+2z^2\)
Tìm tất cả các cặp số nguyên dương (x;y) thoả mãn 4x2 = 3x + y2
\(\text{Tìm tất cả cặp số nguyên x, y thoả mãn} \\y^2+y=x^4+x^3+x^2+x\)
Tìm tất cả các cặp số nguyên dương (x; y) thoả mãn x6 + x3y = y3 + 2y2.
cho các số thực dương x,y,z thoả mãn \(\sqrt{x}\) + \(\sqrt{y}\) + \(\sqrt{z}\) = 1
chứng minh rằng : \(\sqrt{\dfrac{xy}{x+y+2z}}\) + \(\sqrt{\dfrac{yz}{y+z+2x}}\) + \(\sqrt{\dfrac{zx}{z+x+2y}}\) ≤ \(\dfrac{1}{2}\)