Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nanako
Xem chi tiết
Hoàng Tử Hà
6 tháng 4 2021 lúc 13:54

a/ \(y=\left(x^3-3x\right)^{\dfrac{3}{2}}\Rightarrow y'=\dfrac{3}{2}\left(x^3-3x\right)^{\dfrac{1}{2}}\left(x^3-3x\right)'=\dfrac{3}{2}\left(3x^2-3\right)\sqrt{x^3-3x}\)

b/ \(y'=5\left(\sqrt{x^3+1}-x^2+2\right)^4\left(\sqrt{x^3+1}-x^2+2\right)'=5\left(\sqrt{x^3+1}-x^2+2\right)^4\left(\dfrac{3x^2}{\sqrt{x^3+1}}-2x\right)\)c/ 

\(y'=14\left(x^6+2x-3\right)^6\left(x^6+2x-3\right)'=14\left(x^6+2x-3\right)^6\left(6x^5+2\right)\)

d/ \(y=\left(x^3-1\right)^{-\dfrac{5}{2}}\Rightarrow y'=-\dfrac{5}{2}\left(x^3-1\right)^{-\dfrac{7}{2}}\left(x^3-1\right)'=-\dfrac{15x^2}{2\sqrt{\left(x^3-1\right)^7}}\)

Nguyễn Văn Đình Lâm
Xem chi tiết
Nhat Anh
20 tháng 4 2022 lúc 21:22

C

Đào Tiến Đạt
20 tháng 4 2022 lúc 21:36

B

Nguyễn Việt Lâm
23 tháng 4 2022 lúc 11:13

\(y'=3\left(x^2-\dfrac{2}{x}\right)^2.\left(x^2-\dfrac{2}{x}\right)'=3\left(x^2-\dfrac{2}{x}\right)^2\left(2x+\dfrac{2}{x^2}\right)\)

\(=6\left(x+\dfrac{1}{x^2}\right)\left(x^2-\dfrac{2}{x}\right)^2\)

Thầy Cao Đô
Xem chi tiết
Trần Huỳnh Kim Ngân
20 tháng 4 2022 lúc 15:26

https://drive.google.com/file/d/14Q-YI3szy-rePnIHWGD35RKCWiCXCT6k/view?usp=sharing

Nguyễn Tấn Phát
20 tháng 4 2022 lúc 15:55

loading...  

Võ Ngọc Tú Uyên
20 tháng 4 2022 lúc 16:35

Võ Ngọc Tú Uyênloading...  

Buddy
Xem chi tiết
Hà Quang Minh
22 tháng 9 2023 lúc 21:06

a) Với \({x_0}\) bất kì, ta có:

\(\begin{array}{l}f'\left( {{x_0}} \right) = \mathop {\lim }\limits_{x \to {x_0}} \frac{{f\left( x \right) - f\left( {{x_0}} \right)}}{{x - {x_0}}} = \mathop {\lim }\limits_{x \to {x_0}} \frac{{{x^3} + {x^2} - x_0^3 - x_0^2}}{{x - {x_0}}}\\ = \mathop {\lim }\limits_{x \to {x_0}} \frac{{\left( {x - {x_0}} \right)\left( {{x^2} + x{x_0} + x_0^2} \right) + \left( {x - {x_0}} \right)\left( {x + {x_0}} \right)}}{{x - {x_0}}} = \mathop {\lim }\limits_{x \to {x_0}} \frac{{\left( {x - {x_0}} \right)\left( {{x^2} + x{x_0} + x_0^2 + x + {x_0}} \right)}}{{x - {x_0}}}\\ = \mathop {\lim }\limits_{x \to {x_0}} \left( {{x^2} + x{x_0} + x_0^2 + x + {x_0}} \right) = 3x_0^2 + 2{x_0}\end{array}\)

Vậy hàm số \(y = {x^3} + {x^2}\) có đạo hàm là hàm số \(y' = 3{x^2} + 2x\)

b) \({\left( {{x^3}} \right)^,} + {\left( {{x^2}} \right)^,} = 3{x^2} + 2x\)

Do đó \(\left( {{x^3} + {x^2}} \right)'\) = \(\left( {{x^3}} \right)' + \left( {{x^2}} \right)'.\)

Nguyễn Văn Đình Lâm
Xem chi tiết
Đào Tiến Đạt
20 tháng 4 2022 lúc 21:37

...

Nguyễn Việt Lâm
23 tháng 4 2022 lúc 11:13

\(y'=7\left(-x^2+3x+7\right)^6.\left(-x^2+3x+7\right)'\)

\(=7\left(-2x+3\right)\left(-x^2+3x+7\right)^6\)

haudreywilliam
Xem chi tiết
kodo sinichi
30 tháng 3 2022 lúc 5:44

Cho hàm số y=f(x)y=f(x) có đạo hàm và liên tục trên [0;π2][0;π2]thoả mãn f(x)=f′(x)−2cosxf(x)=f′(x)−2cosx. Biết f(π2)=1f(π2)=1, tính giá trị f(π3)f(π3)

A. √3+1/2         B. √3−1/2          C. 1−√3/2             D. 0

Minh khôi Bùi võ
30 tháng 3 2022 lúc 7:35

B

Nguyễn Việt Lâm
4 tháng 4 2022 lúc 23:09

\(f'\left(x\right)-f\left(x\right)=2cosx\)

\(\Leftrightarrow e^{-x}.f'\left(x\right)-e^{-x}.f\left(x\right)=2e^{-x}cosx\)

\(\Rightarrow\left[e^{-x}.f\left(x\right)\right]'=2e^{-x}.cosx\)

Lấy nguyên hàm 2 vế:

\(\Rightarrow e^{-x}.f\left(x\right)=\int2e^{-x}cosxdx=e^{-x}\left(sinx-cosx\right)+C\)

Thay \(x=\dfrac{\pi}{2}\Rightarrow e^{-\dfrac{\pi}{2}}.1=e^{-\dfrac{\pi}{2}}+C\Rightarrow C=0\)

\(\Rightarrow f\left(x\right)=sinx-cosx\)

\(\Rightarrow f\left(\dfrac{\pi}{3}\right)=\dfrac{\sqrt{3}-1}{2}\)

títtt
Xem chi tiết
Nguyễn Lê Phước Thịnh
12 tháng 11 2023 lúc 20:02

a: \(y=\left(x-1\right)^3\)

=>\(y'=\left[\left(x-1\right)^3\right]'=3\left(x-1\right)^2\cdot\left(x-1\right)'\)

\(=3\left(x-1\right)^2\)

b: \(y=\left(x+2\right)\left(2x^2-3\right)\)

=>\(y'=\left(x+2\right)'\left(2x^2-3\right)+\left(x+2\right)\left(2x^2-3\right)'\)

=>\(y'=2x^2-3+2\left(x+2\right)\)

\(=2x^2+2x+1\)

c: \(y=\left(x-1\right)^2\left(x+2\right)\)

=>\(y=\left(x^2-2x+1\right)\left(x+2\right)\)

=>\(y'=\left(x^2-2x+1\right)'\left(x+2\right)-\left(x^2-2x+1\right)\left(x+2\right)'\)

=>\(y'=\left(2x-2\right)\left(x+2\right)-x^2+2x-1\)

\(=2x^2+4x-2x-4-x^2+2x-1\)

=>\(y'=x^2+4x-5\)

c: \(y=\left(x^2-1\right)\left(2x+1\right)\)

=>\(y'=\left(x^2-1\right)'\left(2x+1\right)+\left(x^2-1\right)\left(2x+1\right)'\)

\(=2x\left(2x+1\right)+2\left(x^2-1\right)\)

\(=4x^2+2x+2x^2-2=6x^2+2x-2\)

Julian Edward
Xem chi tiết
Nguyễn Việt Lâm
22 tháng 4 2021 lúc 23:05

Đặt \(g\left(x\right)=\left(1+x\right)\left(2+x\right)...\left(2017+x\right)\)

\(\Rightarrow g\left(0\right)=1.2.3...2017=2017!\)

\(f\left(x\right)=\dfrac{x}{g\left(x\right)}\Rightarrow f'\left(x\right)=\dfrac{g\left(x\right)-x.g'\left(x\right)}{g^2\left(x\right)}\)

\(\Rightarrow f'\left(0\right)=\dfrac{g\left(0\right)-0.g'\left(x\right)}{\left[g\left(0\right)\right]^2}=\dfrac{g\left(0\right)}{\left[g\left(0\right)\right]^2}=\dfrac{1}{g\left(0\right)}=\dfrac{1}{2017!}\)

Buddy
Xem chi tiết
Nguyễn Lê Phước Thịnh
20 tháng 8 2023 lúc 20:24

\(y=\dfrac{x+3}{x+2}\)

=>\(y'=\dfrac{\left(x+3\right)'\left(x+2\right)-\left(x+3\right)\left(x+2\right)'}{\left(x+2\right)^2}=\dfrac{x+2-x-3}{\left(x+2\right)^2}=\dfrac{-1}{\left(x+2\right)^2}\)

=>C

ánh tuyết nguyễn
Xem chi tiết