\(y=\dfrac{x+3}{x+2}\)
=>\(y'=\dfrac{\left(x+3\right)'\left(x+2\right)-\left(x+3\right)\left(x+2\right)'}{\left(x+2\right)^2}=\dfrac{x+2-x-3}{\left(x+2\right)^2}=\dfrac{-1}{\left(x+2\right)^2}\)
=>C
\(y=\dfrac{x+3}{x+2}\)
=>\(y'=\dfrac{\left(x+3\right)'\left(x+2\right)-\left(x+3\right)\left(x+2\right)'}{\left(x+2\right)^2}=\dfrac{x+2-x-3}{\left(x+2\right)^2}=\dfrac{-1}{\left(x+2\right)^2}\)
=>C
Hàm số \(y = \frac{1}{{x + 1}}\) có đạo hàm cấp hai tại \(x = 1\) là
A. \(y''\left( 1 \right) = \frac{1}{2}\).
B. \(y''\left( 1 \right) = - \frac{1}{4}\).
C. \(y''\left( 1 \right) = 4\).
D. \(y''\left( 1 \right) = \frac{1}{4}\).
Tính đạo hàm của các hàm số sau:
a) \(y = 3{x^4} - 7{x^3} + 3{x^2} + 1\);
b) \(y = {\left( {{x^2} - x} \right)^3}\);
c) \(y = \frac{{4{\rm{x}} - 1}}{{2{\rm{x}} + 1}}\)
Cho hai hàm số \(f\left( x \right) = 2{{\rm{x}}^3} - {x^2} + 3\) và \(g\left( x \right) = {x^3} + \frac{{{x^2}}}{2} - 5\). Bất phương trình \(f'\left( x \right) > g'\left( x \right)\) có tập nghiệm là
A. \(\left( { - \infty ;0} \right] \cup \left[ {1; + \infty } \right)\).
B. \(\left( {0;1} \right)\).
C. \(\left[ {0;1} \right]\).
D. \(\left( { - \infty ;0} \right) \cup \left( {1; + \infty } \right)\).
Tinh đạo hàm của các hàm số sau:
a) \(y = \tan \left( {{e^x} + 1} \right)\);
b) \(y = \sqrt {\sin 3x} \);
c) \(y = \cot \left( {1 - {2^x}} \right)\).
Tính đạo hàm của các hàm số sau:
a) \(y = \left( {{x^2} + 3x - 1} \right){e^x}\);
b) \(y = {x^3}{\log _2}x\).
Cho hàm số \(y = {x^3} - 3{{\rm{x}}^2}\). Tiếp tuyến với đồ thị của hàm số tại điểm \(M\left( { - 1;4} \right)\) có hệ số góc bằng:
A. ‒3.
B. 9.
C. ‒9.
D. 72.
Cho hàm số \(f\left( x \right) = {x^2} - 2x + 3\) có đồ thị \(\left( C \right)\) và điểm \(M\left( { - 1;6} \right) \in \left( C \right)\). Viết phương trình tiếp tuyến với \(\left( C \right)\) tại điểm \(M\).
Hàm số \(y = - {x^2} + x + 7\) có đạo hàm tại \(x = 1\) bằng
A. ‒1.
B. 7.
C. 1.
D. 6.
Tính đạo hàm cấp hai của các hàm số sau:
a) \(y = {x^3} - 4{x^2} + 2x - 3\);
b) \(y = {x^2}{e^x}\).