Những câu hỏi liên quan
Vũ Bùi Trung Hiếu
Xem chi tiết
𝓓𝓾𝔂 𝓐𝓷𝓱
20 tháng 3 2021 lúc 21:31

Tham khảo 

undefined

Bình luận (2)
Nguyễn Văn A
Xem chi tiết
meme
1 tháng 9 2023 lúc 14:03

Để chứng minh rằng ama + bmb + cmc ≥ √32, ta sử dụng bất đẳng thức tam giác. Bất đẳng thức tam giác cho biết rằng tổng độ dài của ba đường trung tuyến của một tam giác luôn lớn hơn hoặc bằng bình phương độ dài cạnh tương ứng. Vì vậy, ta có:

ama + bmb + cmc ≥ (ma + mb + mc)²/3

Theo định lý đường trung tuyến, ta biết rằng ma + mb + mc = 3/2(a + b + c). Thay vào biểu thức trên, ta có:

ama + bmb + cmc ≥ (3/2(a + b + c))²/3

Simplifying the expression, we get:

ama + bmb + cmc ≥ 3/4(a + b + c)²

Để chứng minh rằng ama + bmb + cmc ≥ √32, ta cần chứng minh rằng 3/4(a + b + c)² ≥ √32. Tuy nhiên, để chứng minh điều này, cần thêm thông tin về giá trị của a, b, c.

Bình luận (0)
ANHOI
Xem chi tiết
Hoàng Lê Bảo Ngọc
17 tháng 8 2016 lúc 7:19

Ta có : a+b > c , b+c > a , c+a > b

Xét : \(\frac{1}{a+c}+\frac{1}{b+c}>\frac{1}{a+b+c}+\frac{1}{b+c+a}=\frac{2}{a+b+c}>\frac{2}{a+b+a+b}=\frac{1}{a+b}\)

Tương tự , ta cũng có : \(\frac{1}{a+b}+\frac{1}{b+c}>\frac{1}{a+c};\frac{1}{a+b}+\frac{1}{a+c}>\frac{1}{b+c}\)

Vậy ta có đpcm

Chú ý : a,b,c là độ dài ba cạnh của một tam giác chứ không phải a+b,b+c,c+a nhé :)

Bình luận (0)
Big City Boy
Xem chi tiết
Trần Minh Hoàng
9 tháng 3 2021 lúc 22:35

Xét tam giác ABC có ba cạnh BC = a, CA = b, AB = c. Phân giác của các góc A, B, C lần lượt là AD = x, BE = y, CF = z.

Kẻ DM // AB \((M\in AC)\).

Ta có \(\widehat{ADM}=\widehat{BAD}=\widehat{MAD}\Rightarrow\) Tam giác AMD cân tại M.

Do đó AM = MD.

Áp dụng định lý Thales với DM // AB ta có:

\(\dfrac{MD}{AB}=\dfrac{CM}{AC}=1-\dfrac{AM}{AC}=1-\dfrac{DM}{AC}\Rightarrow\dfrac{MD}{AB}+\dfrac{MD}{AC}=1\Rightarrow\dfrac{1}{MD}=\dfrac{1}{AB}+\dfrac{1}{AC}=\dfrac{1}{b}+\dfrac{1}{c}\).

Mặt khác theo bất đẳng thức tam giác ta có \(x=AD< AM+MD=2MD\Rightarrow MD>\dfrac{x}{2}\Rightarrow\dfrac{1}{MD}< \dfrac{2}{x}\Rightarrow\dfrac{1}{b}+\dfrac{1}{c}< \dfrac{2}{x}\).

Tương tự \(\dfrac{1}{c}+\dfrac{1}{a}< \dfrac{2}{y};\dfrac{1}{a}+\dfrac{1}{b}< \dfrac{2}{z}\).

Cộng vế với vế của các bđt trên rồi rút gọn ta có đpcm.

Bình luận (0)
Nguyễn Ngọc Anh
Xem chi tiết
Trần Đình Thiên
25 tháng 7 2023 lúc 20:55

Để chứng minh bất đẳng thức 1 < a/b+c+b/c+a+c/a+b < 2, ta sẽ chứng minh từng phần.

Phần 1: Chứng minh 1 < a/b+c+b/c+a+c/a+b

Ta có:
a/b + b/c + c/a > 3√(a/b * b/c * c/a) = 3√(abc/(abc)) = 3

Vậy ta có: a/b + b/c + c/a + b/a + c/b + a/c > 3 + 1 + 1 = 5

Phần 2: Chứng minh a/b+c+b/c+a+c/a+b < 2

Ta có:
a/b + b/c + c/a < a/b + b/a + b/c + c/b = (a+b)/(b+c) + (b+c)/(a+b)

Áp dụng bất đẳng thức AM-GM, ta có:
(a+b)/(b+c) + (b+c)/(a+b) ≥ 2√[(a+b)/(b+c) * (b+c)/(a+b)] = 2

Do đó ta có: a/b+c+b/c+a+c/a+b < 2

Từ đó, ta suy ra bất đẳng thức 1 < a/b+c+b/c+a+c/a+b < 2.

Bình luận (0)
Darya Dutes
25 tháng 7 2023 lúc 20:58

Để chứng minh bất đẳng thức 1 < a/b+c+b/c+a+c/a+b < 2, ta sẽ chứng minh từng phần.

Phần 1: Chứng minh 1 < a/b+c+b/c+a+c/a+b

Ta có:
a/b + b/c + c/a > 3√(a/b * b/c * c/a) = 3√(abc/(abc)) = 3

Vậy ta có: a/b + b/c + c/a + b/a + c/b + a/c > 3 + 1 + 1 = 5

Phần 2: Chứng minh a/b+c+b/c+a+c/a+b < 2

Ta có:
a/b + b/c + c/a < a/b + b/a + b/c + c/b = (a+b)/(b+c) + (b+c)/(a+b)

Áp dụng bất đẳng thức AM-GM, ta có:
(a+b)/(b+c) + (b+c)/(a+b) ≥ 2√[(a+b)/(b+c) * (b+c)/(a+b)] = 2

Do đó ta có: a/b+c+b/c+a+c/a+b < 2

Từ đó, ta suy ra bất đẳng thức 1 < a/b+c+b/c+a+c/a+b < 2.

Bình luận (0)
Lê Huy Hoàng
Xem chi tiết
Nguyễn Việt Lâm
12 tháng 1 2022 lúc 15:13

\(\dfrac{1}{a+b-c}+\dfrac{1}{b+c-a}\ge\dfrac{4}{a+b-c+b+c-a}=\dfrac{2}{b}\)

Tương tự:

\(\dfrac{1}{a+b-c}+\dfrac{1}{c+a-b}\ge\dfrac{2}{a}\) ; \(\dfrac{1}{b+c-a}+\dfrac{1}{c+a-b}\ge\dfrac{2}{c}\)

Cộng vế:

\(2\left(\dfrac{1}{a+b-c}+\dfrac{1}{b+c-a}+\dfrac{1}{c+a-b}\right)\ge\dfrac{2}{a}+\dfrac{2}{b}+\dfrac{2}{c}\)

\(\Rightarrow\dfrac{1}{a+b-c}+\dfrac{1}{b+c-a}+\dfrac{1}{c+a-b}\ge\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c\)

Bình luận (2)
Phuong Tran
Xem chi tiết
Kiều Vũ Linh
6 tháng 5 2021 lúc 9:37

Áp dụng bất đẳng thức Cô-si vào biểu thức \(1+\dfrac{a}{b}\), ta có:

\(1+\dfrac{a}{b}\ge2\sqrt{\dfrac{a}{b}}\)    (1)

Áp dụng bất đẳng thức Cô-si vào biểu thức \(1+\dfrac{b}{c}\), ta có:

\(1+\dfrac{b}{c}\ge2\sqrt{\dfrac{b}{c}}\)    (2)

Áp dụng bất đẳng thức Cô-si vào biểu thức \(1+\dfrac{c}{a}\), ta có:

\(1+\dfrac{c}{a}\ge2\sqrt{\dfrac{c}{a}}\)    (3)

Từ (1), (2) và (3)

\(\Rightarrow\left(1+\dfrac{a}{b}\right)\left(1+\dfrac{b}{c}\right)\left(1+\dfrac{c}{a}\right)\ge2\sqrt{\dfrac{a}{b}}.2\sqrt{\dfrac{b}{c}}.2\sqrt{\dfrac{c}{a}}\)\(\Rightarrow\left(1+\dfrac{a}{b}\right)\left(1+\dfrac{b}{c}\right)\left(1+\dfrac{c}{a}\right)\ge8\) (vì \(\sqrt{\dfrac{a}{b}}.\sqrt{\dfrac{b}{c}}.\sqrt{\dfrac{c}{a}}=1\))

Bình luận (0)
Kiều Vũ Linh
6 tháng 5 2021 lúc 9:38

Dấu "=" xảy ra khi a = b = c. Khi đó tam giác đã cho là tam giác đều

Bình luận (0)
Luyri Vũ
Xem chi tiết
Nguyễn Việt Lâm
22 tháng 6 2021 lúc 6:25

\(\sqrt{\dfrac{a}{b+c-ta}}=\dfrac{a\sqrt{t+1}}{\sqrt{\left(at+a\right)\left(b+c-ta\right)}}\ge\dfrac{2a\sqrt{t+1}}{at+a+b+c-ta}=\dfrac{2a\sqrt{t+1}}{a+b+c}\)

Làm tương tự, cộng lại và rút gọn

Bình luận (0)
Hoàng nhật Giang
Xem chi tiết