Tìm biểu thức Q, biết rằng :
\(\dfrac{x^2+2x}{x-1}.Q=\dfrac{x^2-4}{x^2-x}\)
Tìm điều kiện x để giá trị của biểu thức được xác định và chứng minh rằng với điều kiện đó, biểu thức không phụ thuộc vào biến :
a) \(\dfrac{x-\dfrac{1}{x}}{\dfrac{x^2+2x+1}{x}-\dfrac{2x+2}{x}}\)
b) \(\dfrac{\dfrac{x}{x+1}+\dfrac{1}{x-1}}{\dfrac{2x+2}{x-1}-\dfrac{4x}{x^2-1}}\)
c) \(\dfrac{1}{x-1}-\dfrac{x^3-x}{x^2+1}.\left(\dfrac{x}{x^2-2x+1}-\dfrac{1}{x^2-1}\right)\)
d) \(\left(\dfrac{x}{x^2-36}-\dfrac{x-6}{x^2+6x}\right):\dfrac{2x-6}{x^2+6x}+\dfrac{x}{6-x}\)
a. Cho biểu thức \(B=\dfrac{2}{\sqrt{x}-2}\) với x≥0, x≠4. Tìm x biết rằng \(B=\dfrac{1}{\sqrt{3}+2}+\dfrac{1}{\sqrt{3}-2}\)
b. Cho biểu thức \(A=\dfrac{\sqrt{x}}{x-4}+\dfrac{1}{\sqrt{x}-2}\). Rút gọn A và tính \(P=\dfrac{B}{A}\)
c. Tìm x thỏa mãn: \(P.\left(\sqrt{x}+1\right)-\sqrt{x}+2\sqrt{x-1}=2x-2\sqrt{2x}+4\)
Lời giải:
a)
Ta có: \(\frac{1}{\sqrt{3}+2}+\frac{1}{\sqrt{3}-2}=\frac{\sqrt{3}-2+\sqrt{3}+2}{(\sqrt{3}+2)(\sqrt{3}-2)}=\frac{2\sqrt{3}}{3-4}=-2\sqrt{3}\)
Để \(B=\frac{1}{\sqrt{3}+2}+\frac{1}{\sqrt{3}-2}\Leftrightarrow \frac{2}{\sqrt{x}-2}=-2\sqrt{3}\)
\(\Leftrightarrow \frac{1}{\sqrt{x}-2}=-\sqrt{3}\)
\(\Leftrightarrow\sqrt{x}-2=\frac{-1}{\sqrt{3}}\)
\(\Leftrightarrow \sqrt{x}=2-\frac{1}{\sqrt{3}}\Rightarrow x=(2-\frac{1}{\sqrt{3}})^2=\frac{13-4\sqrt{3}}{3}\)
b)
ĐK: \(x\geq 0; x\neq 4\)
\(A=\frac{\sqrt{x}}{x-4}+\frac{1}{\sqrt{x}-2}=\frac{\sqrt{x}}{x-4}+\frac{\sqrt{x}+2}{(\sqrt{x}-2)(\sqrt{x}+2)}=\frac{\sqrt{x}}{x-4}+\frac{\sqrt{x}+2}{x-4}=\frac{2\sqrt{x}+2}{x-4}\)
\(P=\frac{B}{A}=\frac{2}{\sqrt{x}-2}:\frac{2(\sqrt{x}+1)}{x-4}=\frac{2(x-4)}{2(\sqrt{x}-2)(\sqrt{x}+1)}\)
\(=\frac{(\sqrt{x}+2)(\sqrt{x}-2)}{(\sqrt{x}-2)(\sqrt{x}+1)}=\frac{\sqrt{x}+2}{\sqrt{x}+1}\)
c) Thêm ĐK: \(x\geq 1\)
Từ biểu thức P vừa tìm được:
\(P(\sqrt{x}+1)-\sqrt{x}+2\sqrt{x-1}=2x-2\sqrt{2x}+4\)
\(\Leftrightarrow \frac{\sqrt{x}+2}{\sqrt{x}+1}.(\sqrt{x}+1)-\sqrt{x}+2\sqrt{x-1}=2x-2\sqrt{2x}+4\)
\(\Leftrightarrow \sqrt{x}+2-\sqrt{x}+2\sqrt{x-1}=2x-2\sqrt{2x}+4\)
\(\Leftrightarrow 2\sqrt{x-1}=2x-2\sqrt{2x}+2\)
\(\Leftrightarrow (\sqrt{x-1}-1)^2+(\sqrt{x}-\sqrt{2})^2=0\)
Vì \((\sqrt{x-1}-1)^2, (\sqrt{x}-\sqrt{2})^2\geq 0, \forall x\in \text{ĐKXĐ}\)
\(\Rightarrow (\sqrt{x-1}-1)^2+(\sqrt{x}-\sqrt{2})^2\geq 0\). Dấu bằng xảy ra khi :
\(\left\{\begin{matrix} \sqrt{x-1}-1=0\\ \sqrt{x}-\sqrt{2}=0\end{matrix}\right.\Leftrightarrow x=2\) (thỏa mãn)
Vậy..........
cho biểu thức
A= \(1+\left(\dfrac{x+1}{x^3+1}-\dfrac{1}{x-x^2-1}+\dfrac{2}{x+1}\right):\dfrac{x^3-2x^2}{x^3-x^2+x}\)
a) rút gọn biểu thức A
b) tính g trị biểu thức A biết |\(x-\dfrac{3}{4}\)|=\(\dfrac{5}{4}\)
mk nghỉ bài này đề sai
a) điều kiện : \(x\ne0;x\ne-1;x\ne2\)
ta có : \(A=1+\left(\dfrac{x+1}{x^3+1}-\dfrac{1}{x-x^2-1}+\dfrac{2}{x+1}\right):\dfrac{x^3-2x^2}{x^3-x^2+x}\)
\(\Leftrightarrow A=1+\left(\dfrac{x+1}{\left(x+1\right)\left(x^2-x+1\right)}+\dfrac{1}{x^2-x+1}+\dfrac{2}{x+1}\right):\dfrac{x\left(x-2\right)}{x^2-x+1}\) \(\Leftrightarrow A=1+\left(\dfrac{x+1+x+1+2\left(x^2-x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}\right):\dfrac{x\left(x-2\right)}{x^2-x+1}\) \(\Leftrightarrow A=1+\left(\dfrac{2x^2+4}{\left(x+1\right)\left(x^2-x+1\right)}\right):\dfrac{x^2-x+1}{x\left(x-2\right)}\) \(\Leftrightarrow A=1+\dfrac{2x^2+4}{x\left(x+1\right)\left(x-2\right)}=\dfrac{2x^2+4+x\left(x+1\right)\left(x-2\right)}{x\left(x+1\right)\left(x-2\right)}\)\(\Leftrightarrow A=\dfrac{x^3+x^2-2x+4}{x\left(x+1\right)\left(x-2\right)}\)
b) ta có : \(\left|x-\dfrac{3}{4}\right|=\dfrac{5}{4}\) \(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{3}{4}=\dfrac{5}{4}\\x-\dfrac{3}{4}=\dfrac{-5}{4}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=2\left(L\right)\\x=\dfrac{-1}{2}\end{matrix}\right.\)
thế vào \(A\) ta có : \(A=\dfrac{41}{5}\)
vậy ...............................................................................................................
Cho hai biểu thức:
P = \(\dfrac{\sqrt{x}-1}{\sqrt{x}+2}\) và Q = \(\dfrac{\sqrt{x}+1}{\sqrt{x}}-\dfrac{2-\sqrt{x}}{x+2\sqrt{x}}\) với \(x>0\)
Biết biểu thức Q sau khi thu gọn được Q = \(\dfrac{\sqrt{x}+4}{\sqrt{x}+2}\)
c) Tìm giá trị nhỏ nhất của biểu thức \(A=P:Q\) với điều kiện \(x\ge4\)
\(A=P:Q=\dfrac{\sqrt{x}-1}{\sqrt{x}+2}:\dfrac{\sqrt{x}+4}{\sqrt{x}+2}\)
\(=\dfrac{\sqrt{x}-1}{\sqrt{x}+4}=1+\dfrac{-5}{\sqrt{x}+4}\)
Điều kiện : \(x\ge4\Rightarrow\sqrt{x}+4\ge4\Rightarrow-\dfrac{5}{\sqrt{x}+4}\le-\dfrac{5}{4}\Rightarrow\dfrac{5}{\sqrt{x}+4}\ge\dfrac{5}{4}\)
Dấu ''='' xảy ra \(\Leftrightarrow x=0\)
Vậy \(min_A=\dfrac{5}{4}\Leftrightarrow x=0\)
tìm x \(\in\) Q biết rằng
\(\dfrac{11}{12}\) - ( \(\dfrac{2}{5}\) + x ) = \(\dfrac{2}{3}\)
2x \(\times\) ( x - \(\dfrac{1}{7}\) ) = 0
\(\dfrac{3}{4}\) + \(\dfrac{1}{4}\) : x = \(\dfrac{2}{5}\)
1) \(\dfrac{11}{12}-\left(\dfrac{2}{5}+x\right)=\dfrac{2}{3}\)
\(\Leftrightarrow\dfrac{11}{12}-\dfrac{2}{5}-x=\dfrac{2}{3}\)
\(\Leftrightarrow x=\dfrac{11}{12}-\dfrac{2}{5}-\dfrac{2}{3}\)
\(\Leftrightarrow x=-\dfrac{3}{20}\)
2) \(2x\left(x-\dfrac{1}{7}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x=0\\x-\dfrac{1}{7}=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{7}\end{matrix}\right.\)
3) \(\dfrac{3}{4}+\dfrac{1}{4}:x=\dfrac{2}{5}\)
\(\Leftrightarrow\dfrac{1}{4x}=\dfrac{2}{5}-\dfrac{3}{4}\)
\(\Leftrightarrow\dfrac{1}{4x}=-\dfrac{7}{20}\)
\(\Leftrightarrow4x=-\dfrac{20}{7}\)
\(\Leftrightarrow x=-\dfrac{5}{7}\)
Cho biểu thức A = ( \(\dfrac{x+1}{2x-2}\) + \(\dfrac{3}{x^2-1}\) - \(\dfrac{x+3}{2x+2}\) ) . \(\dfrac{4x^2-4}{5}\)
a, Tìm điều kiện xác định của x để biểu thức A xác định
b, Chứng minh rằng giá trị của biểu thức A không phụ thuộc vào biến x
a: DKXĐ: x<>1; x<>-1
b: \(A=\dfrac{x^2+2x+1+6-\left(x+3\right)\left(x-1\right)}{2\left(x-1\right)\left(x+1\right)}\cdot\dfrac{4\left(x-1\right)\left(x+1\right)}{5}\)
\(=\dfrac{x^2+2x+7-x^2+x-3x+3}{1}\cdot\dfrac{2}{5}=10\cdot\dfrac{2}{5}=4\)
Cho biểu thức A = \(\left(\dfrac{4x}{x+2}+\dfrac{8x^2}{4-x^2}\right):\left(\dfrac{x-1}{x^2-2x}-\dfrac{2}{x}\right)\)
a) Tìm x để giá trị của biểu thức biểu thức A được xác định.
b) Rút gọn A.
c) Tìm giá trị của A biết x2 + 2x = 15
d) Tìm x biết |A| > A
1.Cho biểu thức A=(\(\dfrac{x+2}{2x-4}\) - \(\dfrac{x-2}{2x+4}\)):\(\dfrac{2x}{x^{ }2+2x}\)(ĐKXĐ: x≠-2; x≠2; x≠0)
a)Rút gọn biểu thức A.
b)Tính giá trị của biểu thức A tại x= -4.
a, Rút gọn Biểu thức:
A=\(\left(\dfrac{x+2}{2x-4}-\dfrac{x-2}{2x+4}\right):\dfrac{2x}{x2+2x}\)
= \(\left(\dfrac{x+2}{2x-4}+\dfrac{-x-2}{2x+4}\right):\dfrac{2x}{x2+2x}\)
= \(\left(\dfrac{x+2+-x-2}{2x-4+2x+4}\right):\dfrac{2x}{x2+2x}\)
= 0 \(:\dfrac{2x}{x2+2x}\)
b, \(\left(\dfrac{x+2}{2x-4}-\dfrac{x-2}{2x+4}\right):\dfrac{2x}{x2+2x}\)
Thay tất cả x= -4
=> \(\left(\dfrac{-4+2}{2-4-4}-\dfrac{-4-2}{2-4+4}\right):\dfrac{2.-4}{-4.2+2.-4}\)
= -16 : \(\dfrac{1}{3}\)
= -18
Đối với mỗi biểu thức sau, hãy tìm diều kiện của x để giá trị của biểu thức được xác định :
a) \(\dfrac{2x-3}{\dfrac{x-1}{x+2}}\)
b) \(\dfrac{\dfrac{2x^2+1}{x}}{x-1}\)
c) \(\dfrac{x^2-25}{\dfrac{x^2-10x+25}{x}}\)
d) \(\dfrac{x^2-25}{\dfrac{x^2+10x+25}{x-5}}\)
a)
\(\left\{{}\begin{matrix}x-1\ne0\\x+2\ne0\end{matrix}\right.\)
b)
x khác 1
c)
x khác 0; x khác 5
d) x khác 5 ; x khác -5