Violympic toán 9

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Hà Ngân Hà

a. Cho biểu thức \(B=\dfrac{2}{\sqrt{x}-2}\) với x≥0, x≠4. Tìm x biết rằng \(B=\dfrac{1}{\sqrt{3}+2}+\dfrac{1}{\sqrt{3}-2}\)

b. Cho biểu thức \(A=\dfrac{\sqrt{x}}{x-4}+\dfrac{1}{\sqrt{x}-2}\). Rút gọn A và tính \(P=\dfrac{B}{A}\)

c. Tìm x thỏa mãn: \(P.\left(\sqrt{x}+1\right)-\sqrt{x}+2\sqrt{x-1}=2x-2\sqrt{2x}+4\)

Akai Haruma
14 tháng 5 2018 lúc 16:31

Lời giải:

a)

Ta có: \(\frac{1}{\sqrt{3}+2}+\frac{1}{\sqrt{3}-2}=\frac{\sqrt{3}-2+\sqrt{3}+2}{(\sqrt{3}+2)(\sqrt{3}-2)}=\frac{2\sqrt{3}}{3-4}=-2\sqrt{3}\)

Để \(B=\frac{1}{\sqrt{3}+2}+\frac{1}{\sqrt{3}-2}\Leftrightarrow \frac{2}{\sqrt{x}-2}=-2\sqrt{3}\)

\(\Leftrightarrow \frac{1}{\sqrt{x}-2}=-\sqrt{3}\)

\(\Leftrightarrow\sqrt{x}-2=\frac{-1}{\sqrt{3}}\)

\(\Leftrightarrow \sqrt{x}=2-\frac{1}{\sqrt{3}}\Rightarrow x=(2-\frac{1}{\sqrt{3}})^2=\frac{13-4\sqrt{3}}{3}\)

b)

ĐK: \(x\geq 0; x\neq 4\)

\(A=\frac{\sqrt{x}}{x-4}+\frac{1}{\sqrt{x}-2}=\frac{\sqrt{x}}{x-4}+\frac{\sqrt{x}+2}{(\sqrt{x}-2)(\sqrt{x}+2)}=\frac{\sqrt{x}}{x-4}+\frac{\sqrt{x}+2}{x-4}=\frac{2\sqrt{x}+2}{x-4}\)

\(P=\frac{B}{A}=\frac{2}{\sqrt{x}-2}:\frac{2(\sqrt{x}+1)}{x-4}=\frac{2(x-4)}{2(\sqrt{x}-2)(\sqrt{x}+1)}\)

\(=\frac{(\sqrt{x}+2)(\sqrt{x}-2)}{(\sqrt{x}-2)(\sqrt{x}+1)}=\frac{\sqrt{x}+2}{\sqrt{x}+1}\)

 

 

Akai Haruma
14 tháng 5 2018 lúc 16:32

c) Thêm ĐK: \(x\geq 1\)

Từ biểu thức P vừa tìm được:

\(P(\sqrt{x}+1)-\sqrt{x}+2\sqrt{x-1}=2x-2\sqrt{2x}+4\)

\(\Leftrightarrow \frac{\sqrt{x}+2}{\sqrt{x}+1}.(\sqrt{x}+1)-\sqrt{x}+2\sqrt{x-1}=2x-2\sqrt{2x}+4\)

\(\Leftrightarrow \sqrt{x}+2-\sqrt{x}+2\sqrt{x-1}=2x-2\sqrt{2x}+4\)

\(\Leftrightarrow 2\sqrt{x-1}=2x-2\sqrt{2x}+2\)

\(\Leftrightarrow (\sqrt{x-1}-1)^2+(\sqrt{x}-\sqrt{2})^2=0\)

\((\sqrt{x-1}-1)^2, (\sqrt{x}-\sqrt{2})^2\geq 0, \forall x\in \text{ĐKXĐ}\)

\(\Rightarrow (\sqrt{x-1}-1)^2+(\sqrt{x}-\sqrt{2})^2\geq 0\). Dấu bằng xảy ra khi :

\(\left\{\begin{matrix} \sqrt{x-1}-1=0\\ \sqrt{x}-\sqrt{2}=0\end{matrix}\right.\Leftrightarrow x=2\) (thỏa mãn)

Vậy..........


Các câu hỏi tương tự
Nguyễn Mạnh Cường
Xem chi tiết
Ánh Nguyễn
Xem chi tiết
KYAN Gaming
Xem chi tiết
Trúc Nguyễn
Xem chi tiết
nguyen ngoc son
Xem chi tiết
Trúc Nguyễn
Xem chi tiết
nguyen ngoc son
Xem chi tiết
nguyen ngoc son
Xem chi tiết
Trúc Nguyễn
Xem chi tiết