Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Anxiety
Xem chi tiết
Nam Dam
Xem chi tiết
btkho
Xem chi tiết
Dương Nguyễn
Xem chi tiết
Nguyễn Việt Lâm
16 tháng 4 2022 lúc 19:19

\(\lim\limits_{x\rightarrow0}\dfrac{\sqrt[3]{ax+1}-\sqrt[]{1-bx}}{x}=\lim\limits_{x\rightarrow0}\dfrac{\dfrac{ax}{\sqrt[3]{\left(ax+1\right)^2}+\sqrt[3]{ax+1}+1}+\dfrac{bx}{1+\sqrt[]{1-bx}}}{x}\)

\(=\lim\limits_{x\rightarrow0}\left(\dfrac{a}{\sqrt[3]{\left(ax+1\right)^2}+\sqrt[3]{ax+1}+1}+\dfrac{b}{1+\sqrt[]{1-bx}}\right)=\dfrac{a}{3}+\dfrac{b}{2}\)

Hàm liên tục tại \(x=0\) khi:

\(\dfrac{a}{3}+\dfrac{b}{2}=3a-5b-1\Leftrightarrow8a-11b=3\)

FK-HUYTA
Xem chi tiết
Hồng Phúc
5 tháng 1 2021 lúc 17:57

undefined

NGUYỄN MINH TÀI
Xem chi tiết
Akai Haruma
13 tháng 6 2018 lúc 19:20

Lời giải:

Với $a=0$ thì pt trở thành: \(bx+c=0\)

\((c+a)^2< ab+bc-2ac\Leftrightarrow c^2< bc\Rightarrow c(c-b)< 0\Rightarrow 0< c< b\)

PT luôn có nghiệm \(x=\frac{-c}{b}\)

Với $a\neq 0$

Nếu \(ac<0\Rightarrow b^2-ac>0\Leftrightarrow \Delta>0\) nên pt \(ax^2+bx+c=0\) có nghiệm

Nếu \(ac>0, c>0\Rightarrow a>0\)

Ta có: \((c+a)^2< ab+bc-2ac< ab+bc\) do \(ac>0\)

\(\Leftrightarrow (c+a)^2< b(a+c)\)

\(a>0, c>0\Rightarrow a+c>0\), chia 2 vế cho $a+c$ thu được:

\(0< c+a< b\Rightarrow \Delta'=b^2-4ac>(c+a)^2-4ac=(a-c)^2\geq 0\)

Do đó pt \(ax^2+bx+c=0\) có nghiệm

Huỳnh Thị Thu Uyên
Xem chi tiết
Đức Tâm
Xem chi tiết
Vi Lê Bình Phương
Xem chi tiết
Akai Haruma
5 tháng 3 2018 lúc 17:07

Bài 1:

Áp dụng hệ thức Viete của pt bậc 2 ta có:

\(\left\{\begin{matrix} x_1+x_2=\frac{-b}{a}\\ x_1x_2=\frac{c}{a}\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} \frac{-b}{a}=-4(1)\\ \frac{c}{a}=-5(2)\end{matrix}\right.\)

Từ (1) \(\Rightarrow b=4a\). Mà \(a+b=5\) nên \(\Leftrightarrow a+4a=5\Leftrightarrow 5a=5\Leftrightarrow a=1\)

\(\Rightarrow b=4a=4\)

Từ \((2)\Rightarrow c=-5a=-5\)

Do đó PT là: \(x^2+4x-5=0\) (thử lại thấy thỏa mãn)

Bài 2:

\(\left\{\begin{matrix} x=2\\ mx+y=m^2+3\end{matrix}\right.\) \(\Rightarrow 2m+y=m^2+3\)

\(\Leftrightarrow y=m^2-2m+3\)

Khi đó:

\(x+y=2+m^2-2m+3=m^2-2m+5\)

\(x+y=(m-1)^2+4\geq 4\) do \((m-1)^2\ge 0\forall m\in\mathbb{R}\)

Dấu bằng xảy ra khi \(m=1\)

Do đó $x+y$ đạt min khi \(m=1\)

ngonhuminh
5 tháng 3 2018 lúc 17:59

1)

Bài toán tương hệ : \(\left\{{}\begin{matrix}b^2-4c\ge0\\a+b=5\\\dfrac{-b}{a}=-4\\\dfrac{c}{a}=-5\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}b^2\ge4c\left(1\right)\\a+b=5\left(2\right)\\4a-b=0\left(3\right)\\5a+c=0\left(4\right)\end{matrix}\right.\)

(2) cộng (3) \(\Leftrightarrow5a=5\Leftrightarrow a=\dfrac{5}{5}=1\) thế vào (2) => b =4

thế vào (4) => c=-5 ; c <0 => (1) luôn đúng

Kết luận (không phải thử lai hành động vô nghĩa )

\(f\left(x\right)=x^2+4x-5\)

2)

\(\left\{{}\begin{matrix}x=2\\mx+y=m^2+3\end{matrix}\right.\)\(\begin{matrix}\left(1\right)\\\left(2\right)\end{matrix}\)

thế (1) vào (2)

<=>\(y=m^2-2m+3=\left(m^2-2m+1\right)+2=\left(m-1\right)^2+2\)

x hằng số => x+y nhỏ nhất khi y nhỏ nhất

có (m-1)^2 >=0 đẳng thức khi m =1

=> y nhỏ nhất => m =1

kết luận :

m =1

bài bắt tìm "m" => để (x+y ) nhỏ nhất không bắt tính (x+y) do đâu cần biểu thức (x+y) phức tạp thêm vô bỏ