Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyên Hoàng
Xem chi tiết
Nguyễn Việt Lâm
22 tháng 1 lúc 23:22

Biểu thức này có thể coi là ko rút gọn được, thứ duy nhất rút gọn được là ở phân thức đằng sau, \(\dfrac{a\sqrt[]{b}-b\sqrt[]{a}}{\sqrt[]{ab}}=\sqrt[]{a}-\sqrt[]{b}\)

Ngoài ra thì hết rồi, vẫn rất cồng kềnh

AK-47
Xem chi tiết
Nguyễn Lê Phước Thịnh
16 tháng 9 2023 lúc 21:02

a: \(=\dfrac{\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{ab}}:\dfrac{1}{\sqrt{a}-\sqrt{b}}\)

\(=\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)=a-b\)

b: \(=\dfrac{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}{\sqrt{a}+\sqrt{b}}-\dfrac{\left(\sqrt{a}-\sqrt{b}\right)^2}{\sqrt{a}-\sqrt{b}}\)

\(=\sqrt{a}-\sqrt{b}-\sqrt{a}+\sqrt{b}\)

=0

Đinh Cẩm Tú
Xem chi tiết
Trần Phương Thảo
Xem chi tiết
Thiên Thương Lãnh Chu
8 tháng 2 2021 lúc 21:45

a) ĐKXĐ: \(\left\{{}\begin{matrix}a>0\\b>0\\a\ne b\end{matrix}\right.\)

P = \(\dfrac{a-\sqrt{ab}+b+3\sqrt{ab}}{\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b\right)}.\left[\left(\dfrac{a+\sqrt{ab}+b-3\sqrt{ab}}{\left(\sqrt{a}-\sqrt{b}\right)\left(a+\sqrt{ab}+b\right)}\right):\dfrac{a-b}{a+\sqrt{ab}+b}\right]\)\(\dfrac{\left(\sqrt{a}+\sqrt{b}\right)^2}{\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b\right)}.\left[\dfrac{\left(\sqrt{a}-\sqrt{b}\right)^2}{\left(\sqrt{a}-\sqrt{b}\right)\left(a+\sqrt{ab}+b\right)}.\dfrac{a+\sqrt{ab}+b}{a-b}\right]\)

\(\dfrac{\sqrt{a}+\sqrt{b}}{a-\sqrt{ab}+b}.\dfrac{\sqrt{a}-\sqrt{b}}{a-b}\)

\(\dfrac{1}{a-\sqrt{ab}+b}\)

b) có a = 16 và b = 4 (thoả mãn ĐKXĐ)

Thay a = 16, b =4 vào P có:

P = \(\dfrac{1}{16-\sqrt{16.4}+4}\)\(\dfrac{1}{12}\)

Vậy tại a =16, b = 4 thì P = \(\dfrac{1}{12}\)

chanh
Xem chi tiết
Nguyễn Lê Phước Thịnh
25 tháng 5 2022 lúc 10:20

 

undefined

Phạm Ngọc Minh
Xem chi tiết
Nguyễn Lê Phước Thịnh
7 tháng 8 2023 lúc 14:19

\(I=\dfrac{a-\sqrt{ab}+b+3\sqrt{ab}}{\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b\right)}\cdot\left[\left(\dfrac{a+\sqrt{ab}+b+3\sqrt{ab}}{\left(\sqrt{a}-\sqrt{b}\right)\left(a+\sqrt{ab}+b\right)}\right)\cdot\dfrac{a+\sqrt{ab}+b}{a-b}\right]\)

\(=\dfrac{a+2\sqrt{ab}+b}{\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b\right)}\cdot\left(\dfrac{a+4\sqrt{ab}+b}{\left(\sqrt{a}-\sqrt{b}\right)\left(a+\sqrt{ab}+b\right)}\cdot\dfrac{a+\sqrt{ab}+b}{a-b}\right)\)

\(=\dfrac{\sqrt{a}+\sqrt{b}}{a-\sqrt{ab}+b}\cdot\dfrac{a+4\sqrt{ab}+b}{\left(\sqrt{a}-\sqrt{b}\right)\left(a-b\right)}\)

\(=\dfrac{a+4\sqrt{ab}+b}{\left(\sqrt{a}-\sqrt{b}\right)^2\cdot\left(a-\sqrt{ab}+b\right)}\)

Khi a=16 và b=4 thì \(I=\dfrac{16+4+4\cdot\sqrt{16\cdot4}}{\left(4-2\right)^2\cdot\left(16-\sqrt{16\cdot4}+4\right)}=\dfrac{20+4\cdot8}{4\cdot12}\)

\(=\dfrac{20+32}{48}=\dfrac{52}{48}=\dfrac{13}{12}\)

Nguyên Hoàng
Xem chi tiết

\(A=\dfrac{2\sqrt{b}}{\sqrt{a}-\sqrt{b}}-\dfrac{1}{a-b}\left(\dfrac{a\sqrt{a}-b\sqrt{b}}{\sqrt{a}-\sqrt{b}}+\sqrt{ab}\right)\)

\(=\dfrac{2\sqrt{b}}{\sqrt{a}-\sqrt{b}}-\dfrac{1}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}\left(\dfrac{\left(\sqrt{a}-\sqrt{b}\right)\left(a+\sqrt{ab}+b\right)}{\sqrt{a}-\sqrt{b}}+\sqrt{ab}\right)\)

\(=\dfrac{2\sqrt{b}}{\sqrt{a}-\sqrt{b}}-\dfrac{a+2\sqrt{ab}+b}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}\)

\(=\dfrac{2\sqrt{b}}{\sqrt{a}-\sqrt{b}}-\dfrac{\sqrt{a}+\sqrt{b}}{\sqrt{a}-\sqrt{b}}\)

\(=\dfrac{2\sqrt{b}-\sqrt{a}-\sqrt{b}}{\sqrt{a}-\sqrt{b}}=\dfrac{-\sqrt{a}+\sqrt{b}}{\sqrt{a}-\sqrt{b}}\)

=-1

Thiếu Gia Họ Nguyễn
Xem chi tiết
Ngoc Anhh
22 tháng 11 2021 lúc 18:58

\(\dfrac{a\sqrt{a}+b\sqrt{b}}{\sqrt{ab}}.\dfrac{1}{\sqrt{a}+\sqrt{b}}\)

\(=\dfrac{\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b\right)}{\sqrt{ab}}.\dfrac{1}{\sqrt{a}+\sqrt{b}}\)

\(=\dfrac{a-\sqrt{ab}+b}{\sqrt{ab}}\)

An Đinh Khánh
Xem chi tiết
An Đinh Khánh
26 tháng 6 2023 lúc 15:44

câu a ở phần mẫu của cụm đầu tiên cái \(\left(\sqrt{a+\sqrt{b}}\right)^2\rightarrow\left(\sqrt{a}+\sqrt{b}\right)^2\) giúp em với ạ ( em cảm ơn )

Gia Huy
26 tháng 6 2023 lúc 16:02

a

\(=\dfrac{a-2\sqrt{ab}+b+4\sqrt{ab}}{a+2\sqrt{ab}+b-4\sqrt{ab}}.\dfrac{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}{\left(\sqrt{a}-\sqrt{b}\right)^2}\\ =\dfrac{\left(\sqrt{a}+\sqrt{b}\right)^2}{\left(\sqrt{a}-\sqrt{b}\right)^2}.\dfrac{\sqrt{a}+\sqrt{b}}{\sqrt{a}-\sqrt{b}}\\ =\dfrac{\left(\sqrt{a}+\sqrt{b}\right)^2.\left(\sqrt{a}+\sqrt{b}\right)}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)^2}\\ =\dfrac{\left(\sqrt{a}+\sqrt{b}\right)^3}{\left(\sqrt{a}-\sqrt{b}\right)^3}\)

trần minh khôi
Xem chi tiết
Shinichi Kudo
26 tháng 5 2022 lúc 20:47

\(B=\dfrac{a\sqrt{b}-b\sqrt{a}}{\sqrt{ab}}:\dfrac{1}{\sqrt{a}.\sqrt{b}}\)

\(B=\dfrac{a\sqrt{b}-b\sqrt{a}}{\sqrt{ab}}.\sqrt{ab}\)

\(B=a\sqrt{b}-b\sqrt{a}\)

2611
26 tháng 5 2022 lúc 20:47

Với `a,b > 0` có:

`B=[a\sqrt{b}-b\sqrt{a}]/\sqrt{ab} :1/[\sqrt{a}.\sqrt{b}]`

`B=[a\sqrt{b}-b\sqrt{a}]/[\sqrt{ab}] .\sqrt{ab}`

`B=a\sqrt{b}-b\sqrt{a}`

Ngô Cao Hoàng
26 tháng 5 2022 lúc 20:49

\(\text{​​}\dfrac{a\sqrt{b}-b\sqrt{a}}{\sqrt{ab}}:\dfrac{1}{\sqrt{a}.\sqrt{b}}=\dfrac{a\sqrt{b}-b\sqrt{a}}{\sqrt{ab}}.\sqrt{ab}=a\sqrt{b}-b\sqrt{a}\)