a) Tính \(M=\sqrt{a^2+4ab^2+4b^4}-\sqrt{4a^2-12ab^2+9b^4}\)
Với \(a=\sqrt{2};b=1\)
b) Tính \(\dfrac{\sqrt{x}+\sqrt{3}}{3-x}.\left(\dfrac{x\sqrt{x}+3\sqrt{3}}{x-\sqrt{3x}+3}-2\sqrt{x}\right)\)
tính giá trị cuả biểu thức
A= \(\sqrt{a^2+4ab^2+4b^4}\)- \(\sqrt{4a^2-12ab^2+9b^4}\)với a=\(\sqrt{2}\), b= 1
A=\(\sqrt{a^2+4ab^2+4b^4}-\sqrt{4a^2-12ab^2+9b^4}\)
=\(\sqrt{\left(a+2b^2\right)^2}-\sqrt{\left(2a-3b^2\right)^2}\)
=\(\left|a+2b^2\right|-\left|2a-3b^2\right|\)
Thay a=\(\sqrt{2}\),b=1 vào A đã rút gọn có:
A= \(\left|\sqrt{2}+2.1^2\right|-\left|2\sqrt{2}-3.1^2\right|=\sqrt{2}+2-\left|2\sqrt{2}-3\right|\)
=\(\sqrt{2}+2-3+2\sqrt{2}=3\sqrt{2}-1\)
Vậy A=\(3\sqrt{2}-1\)
Tính giá trị biểu thức: A=\(\sqrt{a^2+4ab^2+4b^2}-\sqrt{4a^2-12ab^2+9b^2}\) với \(a=\sqrt{2};b=1\)
GIÚP MÌNH VỚI M.N!!~~~~
trước hết bạn hãy bấm nghiệm của chúng trên máy tính rồi tìm ĐKXĐ nhé !
b = 1 =>b2=b
=> A = \(\sqrt{a^2+4ab+4b^2}-\sqrt{4a^2-12ab+9b^2}\)
= \(\sqrt{\left(a+2b\right)^2}-\sqrt{\left(2a-3b\right)^2}\)
= \(\sqrt{\left(\sqrt{2}+2\right)^2}-\sqrt{\left(2\sqrt{2}-3\right)^2}\)
= \(\sqrt{2}+2-3+2\sqrt{2}\)
= \(3\sqrt{2}-1\)
Thay a ; b vào biểu thức A ta có :
\(\sqrt{\left(\sqrt{2}\right)^2+4\sqrt{2}.1^2+4.1^2}-\sqrt{4\left(\sqrt{2}\right)^2-12\sqrt{2}.1^2+9.1^2}\)
\(\approx3,2426\)
Tính giá trị biểu thức: A=\(\sqrt{a^2+4ab^2+4b^4}-\sqrt{a^2-12ab^2+9b^4}\)
với a =\(\sqrt{2}\); b= 1
Với a, b như đề cho thì
\(a^2-12ab^2+9b^4=2-12\sqrt{2}+9=11-12\sqrt{2}
Tính giá trị của biểu thức: A = \(\sqrt{a^2+4ab^2+4b^4}-\sqrt{a^2-12ab^2+9b^4}\) với a = \(\sqrt{2}\); b = 1
Giải
A = \(\sqrt{\left(a+2b^2\right)^2}-\sqrt{\left(2a-3b^2\right)^2}\)
= \(\left|a+2b^2\right|-\left|2a-3b^2\right|\)
Với a = \(\sqrt{2}\); b = 1 thì
A = \(\left|\sqrt{2}+2\right|-\left|2\sqrt{2}-3\right|=\sqrt{2}+2+2\sqrt{2}-3=3\sqrt{2}-1\)
Cho \(a,b,c\in R\) thỏa mãn
\(1\le a,b,c\le2\)
Tìm GTNN \(A=\sqrt{4a^2-12ab+9b^2}+2\sqrt{b^2-2bc+c^2}+\sqrt{4c^2-12ac+9a^2}\)
cho a,b,c các số thực thỏa mãn 1<=a,b,c<=2
tìm gtnn của biểu thức
A = \(\sqrt{4a^2-12ab+9b^2}+2\sqrt{b^2-2bc+c^2}+\sqrt{4c-12ac+9a^2}\)
Ta có :
\(A=\sqrt{\left(2a-3b\right)^2}+2\sqrt{\left(b-c\right)^2}+\sqrt{\left(2c-3a\right)^2}\)
\(A=\left|2a-3b\right|+2\left|b-c\right|+\left|2c-3a\right|\)
\(\ge3b-2a+2\left(c-b\right)+\left(3a-2c\right)=a+b\ge2\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}3b-2a,c-b,3a-2c\ge0\\a=b=1\end{cases}\Leftrightarrow\hept{\begin{cases}a=b=1\\1\le c\le\frac{3}{2}\end{cases}}}\)
Vậy Min A = 2 khi a = b = 1 và c \(\in\)\(\left[1,\frac{3}{2}\right]\)
Cho a ; b ; c \(\in\)[1 ; 2].
Tìm Max A: A = \(\sqrt{4a^2-12ab+9b^2}+2\sqrt{b^2-2bc+c^2}+\sqrt{4c^2-12ac+9a^2}\)
Sau khi phân tích thành nhân tử ta có:
2a-3b+2b-2c+2c-3a
= -a-b<0
=> đẳng thức ko có nghĩa
cho a, b,c > 0 , \(a^2+b^2=2\) . tìm GTLN của
M = \(a\sqrt{9b\left(4a+5b\right)}+b\sqrt{9a\left(4b+5a\right)}\)
2M\(\le\)a(9b+4a+5b)+b(9a+4b+5a) (AM-GM)
=4(a2+b2)+28ab\(\le\)4(a2+b2)+14(a2+b2) (AM-GM)
=36 (do a2+b2=2)
=> M \(\le\)18
Dấu bằng có <=> a=b=1
Cho a,b>0 tm: a+b=4ab
CMR: \(\frac{\sqrt{a^2+4b^2}}{ab}+\frac{\sqrt{b^2+4a^2}}{ab}\ge4\sqrt{5}\)